Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233522

RESUMO

Wild barley accessions have evolved broad-spectrum defence against barley powdery mildew through recessive mlo mutations. However, the mlo defence response is associated with deleterious phenotypes with a cost to yield and fertility, with implications for natural fitness and agricultural productivity. This research elucidates the mechanism behind a novel mlo allele, designated mlo-11(cnv2), which has a milder phenotype compared to standard mlo-11. Bisulphite sequencing and histone ChIP-seq analyses using near-isogenic lines showed pronounced repression of the Mlo promoter in standard mlo-11 compared to mlo-11(cnv2), with repression governed by 24 nt heterochromatic small interfering RNAs. The mlo-11(cnv2) allele appears to largely reduce the physiological effects of mlo while still endorsing a high level of powdery mildew resistance. RNA sequencing showed that this is achieved through only partly restricted expression of Mlo, allowing adequate temporal induction of defence genes during infection and expression close to wild-type Mlo levels in the absence of infection. The two mlo-11 alleles showed copy number proportionate oxidase and peroxidase expression levels during infection, but lower amino acid and aromatic compound biosynthesis compared to the null allele mlo-5. Examination of highly expressed genes revealed a common WRKY W-box binding motif (consensus ACCCGGGACTAAAGG) and a transcription factor more highly expressed in mlo-11 resistance. In conclusion, mlo-11(cnv2) appears to significantly mitigate the trade-off between mlo defence and normal gene expression.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/imunologia , Aptidão Genética , Hordeum/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Alelos , Ascomicetos/crescimento & desenvolvimento , Variações do Número de Cópias de DNA , Inativação Gênica , Hordeum/imunologia , Hordeum/microbiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Mutação , Peroxidase/genética , Peroxidase/imunologia , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/imunologia , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Sequências de Repetição em Tandem
2.
Plant Genome ; 14(3): e20129, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34392613

RESUMO

Powdery mildew isa major disease of barley (Hordeum vulgare L.) for which breeders have traditionally relied on dominant, pathogen race-specific resistance genes for genetic control. Directional selection pressures in extensive monocultures invariably result in such genes being overcome as the pathogen mutates to evade recognition. This has led to a widespread reliance on fungicides and a single broad-spectrum recessive resistance provided by the mlo gene. The range of resistance genes and alleles found in wild crop relatives and landraces has been reduced in agricultural cultivars through an erosion of genetic diversity during domestication and selective breeding. Three novel major-effect adult plant resistance (APR) genes from landraces, designated Resistance to Blumeria graminis f. sp. hordei (Rbgh1 to Rbgh3), were identified in the terminal regions of barley chromosomes 5HL, 7HS, and 1HS, respectively. The phenotype of the new APR genes showed neither pronounced penetration resistance, nor the spontaneous necrosis and mesophyll cell death typical of mlo resistance, nor a whole epidermal cell hypersensitive response, typical of race-specific resistance. Instead, resistance was localized to the site of attempted penetration in an epidermal cell and was associated with cell wall appositions and cytosolic vesicle-like bodies, and lacked strong induction of reactive oxygen species. The APR genes exhibited differences in vesicle-like body sizes, their distribution, and the extent of localized 3,3-diaminobenzidine staining in individual doubled haploid lines. The results revealed a set of unique basal penetration resistance genes that offer opportunities for combining different resistance mechanisms in breeding programs for robust mildew resistance.


Assuntos
Hordeum , Genes de Plantas , Hordeum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa