Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Exp Bot ; 72(14): 5158-5179, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021317

RESUMO

The CGIAR crop improvement (CI) programs, unlike commercial CI programs, which are mainly geared to profit though meeting farmers' needs, are charged with meeting multiple objectives with target populations that include both farmers and the community at large. We compiled the opinions from >30 experts in the private and public sector on key strategies, methodologies, and activities that could the help CGIAR meet the challenges of providing farmers with improved varieties while simultaneously meeting the goals of: (i) nutrition, health, and food security; (ii) poverty reduction, livelihoods, and jobs; (iii) gender equality, youth, and inclusion; (iv) climate adaptation and mitigation; and (v) environmental health and biodiversity. We review the crop improvement processes starting with crop choice, moving through to breeding objectives, production of potential new varieties, selection, and finally adoption by farmers. The importance of multidisciplinary teams working towards common objectives is stressed as a key factor to success. The role of the distinct disciplines, actors, and their interactions throughout the process from crop choice through to adoption by farmers is discussed and illustrated.


Assuntos
Agricultura , Fazendeiros , Humanos
2.
BMC Genomics ; 16: 216, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25887001

RESUMO

BACKGROUND: Genotyping-by-sequencing (GBS) is a high-throughput genotyping approach that is starting to be used in several crop species, including bread wheat. Anchoring GBS tags on chromosomes is an important step towards utilizing them for wheat genetic improvement. Here we use genetic linkage mapping to construct a consensus map containing 28644 GBS markers. RESULTS: Three RIL populations, PBW343 × Kingbird, PBW343 × Kenya Swara and PBW343 × Muu, which share a common parent, were used to minimize the impact of potential structural genomic variation on consensus-map quality. The consensus map comprised 3757 unique positions, and the average marker distance was 0.88 cM, obtained by calculating the average distance between two adjacent unique positions. Significant variation of segregation distortion was observed across the three populations. The consensus map was validated by comparing positions of known rust resistance genes, and comparing them to wheat reference genome sequences recently published by the International Wheat Genome Sequencing Consortium, Rye and Ae. tauschii genomes. Three well-characterized rust resistance genes (Sr58/Lr46/Yr29, Sr2/Yr30/Lr27, and Sr57/Lr34/Yr18) and 15 published QTLs for wheat rusts were validated with high resolution. Fifty-two per cent of GBS tags on the consensus map were successfully aligned through BLAST to the right chromosomes on the wheat reference genome sequence. CONCLUSION: The consensus map should provide a useful basis for analyzing genome-wide variation of complex traits. The identified genes can then be explored as genetic markers to be used in genomic applications in wheat breeding.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Característica Quantitativa Herdável , Triticum/genética , Cromossomos de Plantas , Evolução Molecular , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Endogamia , Doenças das Plantas/genética , Locos de Características Quantitativas
4.
Front Plant Sci ; 15: 1338332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055360

RESUMO

Introduction: Genotyping large-scale gene bank collections requires an appropriate sampling strategy to represent the diversity within and between accessions. Methods: A panel of 44 common bean (Phaseolus vulgaris L.) landraces from the Alliance Bioversity and The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT) gene bank was genotyped with DArTseq using three sampling strategies: a single plant per accession, 25 individual plants per accession jointly analyzed after genotyping (in silico-pool), and by pooling tissue from 25 individual plants per accession (seq-pool). Sampling strategies were compared to assess the technical aspects of the samples, the marker information content, and the genetic composition of the panel. Results: The seq-pool strategy resulted in more consistent DNA libraries for quality and call rate, although with fewer polymorphic markers (6,142 single-nucleotide polymorphisms) than the in silico-pool (14,074) or the single plant sets (6,555). Estimates of allele frequencies by seq-pool and in silico-pool genotyping were consistent, but the results suggest that the difference between pools depends on population heterogeneity. Principal coordinate analysis, hierarchical clustering, and the estimation of admixture coefficients derived from a single plant, in silico-pool, and seq-pool successfully identified the well-known structure of Andean and Mesoamerican gene pools of P. vulgaris across all datasets. Conclusion: In conclusion, seq-pool proved to be a viable approach for characterizing common bean germplasm compared to genotyping individual plants separately by balancing genotyping effort and costs. This study provides insights and serves as a valuable guide for gene bank researchers embarking on genotyping initiatives to characterize their collections. It aids curators in effectively managing the collections and facilitates marker-trait association studies, enabling the identification of candidate markers for key traits.

5.
Sci Rep ; 14(1): 23141, 2024 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367150

RESUMO

Cassava (Manihot esculenta Crantz) is a vital carbohydrate source for over 800 million people globally, yet its production in East Africa is severely affected by cassava brown streak disease (CBSD). Genebanks, through ex-situ conservation, play a pivotal role in preserving crop diversity, providing crucial resources for breeding resilient and disease-resistant crops. This study genotyped 234 South American cassava accessions conserved at the CIAT genebank, previously phenotyped for CBSD resistance by an independent group, to perform a genome-wide association analysis (GWAS) to identify genetic variants associated with CBSD resistance. Our GWAS identified 35 single nucleotide polymorphism (SNP) markers distributed across various chromosomes, associated with disease severity or the presence/absence of viral infection. Markers were annotated within or near genes previously identified with functions related to pathogen recognition and immune response activation. Using the SNP candidates, we screened the world's largest cassava collection for accessions with a higher frequency of favorable genotypes, proposing 35 accessions with potential resistance to CBSD. Our results provide insights into the genetics of CBSD resistance and highlight the importance of genetic resources to equip breeders with the raw materials needed to develop new crop varieties resistant to pests and diseases.


Assuntos
Resistência à Doença , Estudo de Associação Genômica Ampla , Manihot , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Manihot/genética , Manihot/virologia , Manihot/parasitologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , América do Sul , Genótipo , Genoma de Planta , Potyviridae
6.
PLoS One ; 19(5): e0302158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696404

RESUMO

High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT genebank through the identification of phenomic descriptors comparable to classical descriptors including methodology integration into the genebank workflow. To cope with these goals morphometrics and colorimetry traits of 14 bean and 16 forage peanut accessions were determined and compared to the classical International Board for Plant Genetic Resources (IBPGR) descriptors. Descriptors discriminating most accessions were identified using a random forest algorithm. The most-valuable classification descriptors for peanuts were 100-seed weight and days to flowering, and for beans, days to flowering and primary seed color. The combination of phenomic and classical descriptors increased the accuracy of the classification of Phaseolus and Arachis accessions. Functional diversity indices are recommended to genebank curators to evaluate phenotypic variability to identify accessions with unique traits or identify accessions that represent the greatest phenotypic variation of the species (functional agrobiodiversity collections). The artificial intelligence algorithms are capable of characterizing accessions which reduces costs generated by additional phenotyping. Even though deep analysis of data requires new skills, associating genetic, morphological and ecogeographic diversity is giving us an opportunity to establish unique functional agrobiodiversity collections with new potential traits.


Assuntos
Arachis , Phaseolus , Fenótipo , Phaseolus/genética , Phaseolus/anatomia & histologia , Phaseolus/crescimento & desenvolvimento , Arachis/genética , Arachis/crescimento & desenvolvimento , Algoritmos , Banco de Sementes , Aprendizado de Máquina , Inteligência Artificial
7.
Curr Biol ; 34(3): 557-567.e4, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232731

RESUMO

The effect of plant domestication on plant-microbe interactions remains difficult to prove. In this study, we provide evidence of a domestication effect on the composition and abundance of the plant microbiota. We focused on the genus Phaseolus, which underwent four independent domestication events within two species (P. vulgaris and P. lunatus), providing multiple replicates of a process spanning thousands of years. We targeted Phaseolus seeds to identify a link between domesticated traits and bacterial community composition as Phaseolus seeds have been subject to large and consistent phenotypic changes during these independent domestication events. The seed bacterial communities of representative plant accessions from subpopulations descended from each domestication event were analyzed under controlled and field conditions. The results showed that independent domestication events led to similar seed bacterial community signatures in independently domesticated plant populations, which could be partially explained by selection for common domesticated plant phenotypes. Our results therefore provide evidence of a consistent effect of plant domestication on seed microbial community composition and abundance and offer avenues for applying knowledge of the impact of plant domestication on the plant microbiota to improve microbial applications in agriculture.


Assuntos
Microbiota , Phaseolus , Domesticação , Fenótipo , Agricultura , Phaseolus/genética , Sementes/genética
8.
Front Plant Sci ; 14: 1338377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304449

RESUMO

Crop diversity conserved in genebanks facilitates the development of superior varieties, improving yields, nutrition, adaptation to climate change and resilience against pests and diseases. Cassava (Manihot esculenta) plays a vital role in providing carbohydrates to approximately 500 million people in Africa and other continents. The International Center for Tropical Agriculture (CIAT) conserves the largest global cassava collection, housing 5,963 accessions of cultivated cassava and wild relatives within its genebank. Efficient genebank management requires identifying and eliminating genetic redundancy within collections. In this study, we optimized the identification of genetic redundancy in CIAT's cassava genebank, applying empirical distance thresholds, and using two types of molecular markers (single-nucleotide polymorphism (SNP) and SilicoDArT) on 5,302 Manihot esculenta accessions. A series of quality filters were applied to select the most informative and high-quality markers and to exclude low-quality DNA samples. The analysis identified a total of 2,518 and 2,526 (47 percent) distinct genotypes represented by 1 to 87 accessions each, using SNP or SilicoDArT markers, respectively. A total of 2,776 (SNP) and 2,785 (SilicoDArT) accessions were part of accession clusters with up to 87 accessions. Comparing passport and historical characterization data, such as pulp color and leaf characteristic, we reviewed clusters of genetically redundant accessions. This study provides valuable guidance to genebank curators in defining minimum genetic-distance thresholds to assess redundancy within collections. It aids in identifying a subset of genetically distinct accessions, prioritizing collection management activities such as cryopreservation and provides insights for follow-up studies in the field, potentially leading to removal of duplicate accessions.

9.
Theor Appl Genet ; 124(5): 947-56, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22159755

RESUMO

Marker-trait association studies in tomato have progressed rapidly due to the availability of several populations developed between wild species and domesticated tomato. However, in the absence of whole genome sequences for each wild species, molecular marker methods for whole genome comparisons and fine mapping are required. We describe the development and validation of a diversity arrays technology (DArT) platform for tomato using an introgression line (IL) population consisting of wild Solanum pennellii introgressed into Solanum lycopersicum (cv. M82). A tomato diversity array consisting of 6,912 clones from domesticated tomato and twelve wild tomato/Solanaceous species was constructed. We successfully bin-mapped 990 polymorphic DArT markers together with 108 RFLP markers across the IL population, increasing the number of markers available for each S. pennellii introgression by tenfold on average. A subset of DArT markers from ILs previously associated with increased levels of lycopene and carotene were sequenced, and 44% matched protein coding genes. The bin-map position and order of sequenced DArT markers correlated well with their physical position on scaffolds of the draft tomato genome sequence (SL2.40). The utility of sequenced DArT markers was illustrated by converting several markers in both the S. pennellii and S. lycopersicum phases to cleaved amplified polymorphic sequence (CAPS) markers. Genotype scores from the CAPS markers confirmed the genotype scores from the DArT hybridizations used to construct the bin map. The tomato diversity array provides additional "sequence-characterized" markers for fine mapping of QTLs in S. pennellii ILs and wild tomato species.


Assuntos
Marcadores Genéticos/genética , Variação Genética , Hibridização Genética/genética , Solanum lycopersicum/genética , Sequência de Bases , Biologia Computacional , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA
10.
Front Plant Sci ; 13: 1008666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570940

RESUMO

Introduction: Evaluations of interspecific hybrids are limited, as classical genebank accession descriptors are semi-subjective, have qualitative traits and show complications when evaluating intermediate accessions. However, descriptors can be quantified using recognized phenomic traits. This digitalization can identify phenomic traits which correspond to the percentage of parental descriptors remaining expressed/visible/measurable in the particular interspecific hybrid. In this study, a line of P. vulgaris, P. acutifolius and P. parvifolius accessions and their crosses were sown in the mesh house according to CIAT seed regeneration procedures. Methodology: Three accessions and one derived breeding line originating from their interspecific crosses were characterized and classified by selected phenomic descriptors using multivariate and machine learning techniques. The phenomic proportions of the interspecific hybrid (line INB 47) with respect to its three parent accessions were determined using a random forest and a respective confusion matrix. Results: The seed and pod morphometric traits, physiological behavior and yield performance were evaluated. In the classification of the accession, the phenomic descriptors with highest prediction force were Fm', Fo', Fs', LTD, Chl, seed area, seed height, seed Major, seed MinFeret, seed Minor, pod AR, pod Feret, pod round, pod solidity, pod area, pod major, pod seed weight and pod weight. Physiological traits measured in the interspecific hybrid present 2.2% similarity with the P. acutifolius and 1% with the P. parvifolius accessions. In addition, in seed morphometric characteristics, the hybrid showed 4.5% similarity with the P. acutifolius accession. Conclusions: Here we were able to determine the phenomic proportions of individual parents in their interspecific hybrid accession. After some careful generalization the methodology can be used to: i) verify trait-of-interest transfer from P. acutifolius and P. parvifolius accessions into their hybrids; ii) confirm selected traits as "phenomic markers" which would allow conserving desired physiological traits of exotic parental accessions, without losing key seed characteristics from elite common bean accessions; and iii) propose a quantitative tool that helps genebank curators and breeders to make better-informed decisions based on quantitative analysis.

11.
Nat Plants ; 8(5): 491-499, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534721

RESUMO

Crop landraces have unique local agroecological and societal functions and offer important genetic resources for plant breeding. Recognition of the value of landrace diversity and concern about its erosion on farms have led to sustained efforts to establish ex situ collections worldwide. The degree to which these efforts have succeeded in conserving landraces has not been comprehensively assessed. Here we modelled the potential distributions of eco-geographically distinguishable groups of landraces of 25 cereal, pulse and starchy root/tuber/fruit crops within their geographic regions of diversity. We then analysed the extent to which these landrace groups are represented in genebank collections, using geographic and ecological coverage metrics as a proxy for genetic diversity. We find that ex situ conservation of landrace groups is currently moderately comprehensive on average, with substantial variation among crops; a mean of 63% ± 12.6% of distributions is currently represented in genebanks. Breadfruit, bananas and plantains, lentils, common beans, chickpeas, barley and bread wheat landrace groups are among the most fully represented, whereas the largest conservation gaps persist for pearl millet, yams, finger millet, groundnut, potatoes and peas. Geographic regions prioritized for further collection of landrace groups for ex situ conservation include South Asia, the Mediterranean and West Asia, Mesoamerica, sub-Saharan Africa, the Andean mountains of South America and Central to East Asia. With further progress to fill these gaps, a high degree of representation of landrace group diversity in genebanks is feasible globally, thus fulfilling international targets for their ex situ conservation.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ásia Oriental , América do Sul , Triticum/genética
12.
Genome ; 54(11): 875-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21999208

RESUMO

Reference populations are valuable resources in genetics studies for determining marker order, marker selection, trait mapping, construction of large-insert libraries, cross-referencing marker platforms, and genome sequencing. Reference populations can be propagated indefinitely, they are polymorphic and have normal segregation. Described are two new reference populations who share the same parents of the original wheat reference population Synthetic W7984 (Altar84/ Aegilops tauschii (219) CIGM86.940) x Opata M85, an F(1)-derived doubled haploid population (SynOpDH) of 215 inbred lines and a recombinant inbred population (SynOpRIL) of 2039 F(6) lines derived by single-plant self-pollinations. A linkage map was constructed for the SynOpDH population using 1446 markers. In addition, a core set of 42 SSR markers was genotyped on SynOpRIL. A new approach to identifying a core set of markers used a step-wise selection protocol based on polymorphism, uniform chromosome distribution, and reliability to create nested sets starting with one marker per chromosome, followed by two, four, and six. It is suggested that researchers use these markers as anchors for all future mapping projects to facilitate cross-referencing markers and chromosome locations. To enhance this public resource, researchers are strongly urged to validate line identities and deposit their data in GrainGenes so that others can benefit from the accumulated information.


Assuntos
Cruzamento/métodos , Mapeamento Cromossômico/métodos , Produtos Agrícolas/genética , Triticum/genética , Cromossomos de Plantas/genética , Produtos Agrícolas/fisiologia , Cruzamentos Genéticos , Bases de Dados Genéticas , Genes de Plantas , Marcadores Genéticos , Genótipo , Vigor Híbrido , Repetições de Microssatélites , Polinização , Polimorfismo Genético , Recombinação Genética , Sementes/genética , Sementes/fisiologia , Triticum/fisiologia
13.
Mol Genet Genomics ; 284(5): 319-31, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20803217

RESUMO

Segregation distortion can negatively impact on gains expected using selection. In order to increase our understanding of genetic factors that may influence the extent and direction of segregation distortion, segregation distortion analyses were conducted in four different doubled haploid (DH) populations. A high-density composite map of barley was then constructed by integrating information from the four populations. The composite map contained 2,111 unique loci, comprising RFLP, SSR and DArT markers and spanned 1,136 cM. In the four populations investigated, the proportion of markers with segregation distortion ranged from 15 to 38%, depending on the population. The highest distortion was observed in populations derived by the microspore culture technique. Distorted loci tended to be clustered, which allowed definition of segregation distortion regions (SDRs). A total of 14 SDRs were identified in the 4 populations. Using the high-density composite map, several SDRs were shown to have consistent map locations in two or more populations; one SDR on chromosome 1H was present in all four populations. The analysis of haplotypes underlying seven SDRs indicated that in three cases the under-represented haplotypes were common across populations, but for four SDRs the under-represented haplotypes varied across populations. Six of the seven centromeric regions harboured SDRs suggesting that genetic processes related to position near a centromere caused the segregation distortion in these SDRs. Other SDRs were most likely due to the methods used to produce the DH populations. The association of the SDRs identified in this study and some of the genes involved in the process of haploid production described in other studies were compared. The composite map constructed in this study provides an additional resource for the barley community via increased genome coverage and the provision of additional marker options. It has also enabled further insights into mechanisms that underpin segregation distortion.


Assuntos
Segregação de Cromossomos , Cromossomos de Plantas , Hordeum/genética , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Haplótipos
14.
Theor Appl Genet ; 121(3): 465-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20364376

RESUMO

We describe how the diversity arrays technology (DArT) can be coupled with chromosome sorting to increase the density of genetic maps in specific genome regions. Chromosome 3B and the short arm of chromosome 1B (1BS) of wheat were isolated by flow cytometric sorting and used to develop chromosome- and chromosome arm-enriched genotyping arrays containing 2,688 3B clones and 384 1BS clones. Linkage analysis showed that 553 of the 711 polymorphic 3B-derived markers (78%) mapped to chromosome 3B, and 59 of the 68 polymorphic 1BS-derived markers (87%) mapped to chromosome 1BS, confirming the efficiency of the chromosome-sorting approach. To demonstrate the potential for saturation of genetic maps, we constructed a consensus map of chromosome 3B using 19 mapping populations, including some that were genotyped with the 3B-enriched array. The 3B-derived DArT markers doubled the number of genetic loci covered. The resulting consensus map, probably the densest genetic map of 3B available to this date, contains 939 markers (779 DArTs and 160 other markers) that segregate on 304 genetically distinct loci. Importantly, only 2,688 3B-derived clones (probes) had to be screened to obtain almost twice as many polymorphic 3B markers (510) as identified by screening approximately 70,000 whole genome-derived clones (269). Since an enriched DArT array can be developed from less than 5 ng of chromosomal DNA, a quantity which can be obtained within 1 h of sorting, this approach can be readily applied to any crop for which chromosome sorting is available.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos , Triticum/genética , Primers do DNA/química , Primers do DNA/genética , DNA de Plantas/genética , Ligação Genética , Genoma de Planta , Genótipo , Reação em Cadeia da Polimerase
15.
Sci Rep ; 10(1): 19775, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188249

RESUMO

Mineral deficiencies represent a global challenge that needs to be urgently addressed. An adequate intake of iron and zinc results in a balanced diet that reduces chances of impairment of many metabolic processes that can lead to clinical consequences. In plants, bioavailability of such nutrients is reduced by presence of compounds such as phytic acid, that can chelate minerals and reduce their absorption. Biofortification of common bean (Phaseolus vulgaris L.) represents an important strategy to reduce mineral deficiencies, especially in areas of the world where this crop plays a key role in the diet. In this study, a panel of diversity encompassing 192 homozygous genotypes, was screened for iron, zinc and phytate seed content. Results indicate a broad variation of these traits and allowed the identification of accessions reasonably carrying favourable trait combinations. A significant association between zinc seed content and some molecular SNP markers co-located on the common bean Pv01 chromosome was detected by means of genome-wide association analysis. The gene Phvul001G233500, encoding for an E3 ubiquitin-protein ligase, is proposed to explain detected associations. This result represents a preliminary evidence that can foster future research aiming at understanding the genetic mechanisms behind zinc accumulation in beans.


Assuntos
Biofortificação/métodos , Phaseolus/metabolismo , Estudo de Associação Genômica Ampla/métodos , Genótipo , Ferro/metabolismo , Desequilíbrio de Ligação , Phaseolus/genética , Ácido Fítico/metabolismo , Análise de Componente Principal , Zinco/metabolismo
16.
Plants (Basel) ; 9(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019539

RESUMO

The international collections of plant genetic resources for food and agriculture (PGRFA) hosted by 11 CGIAR Centers are important components of the United Nations Food and Agriculture Organization's global system of conservation and use of PGRFA. They also play an important supportive role in realizing Target 2.5 of the Sustainable Development Goals. This paper analyzes CGIAR genebanks' trends in acquiring and distributing PGRFA over the last 35 years, with a particular focus on the last decade. The paper highlights a number of factors influencing the Centers' acquisition of new PGRFA to include in the international collections, including increased capacity to analyze gaps in those collections and precisely target new collecting missions, availability of financial resources, and the state of international and national access and benefit-sharing laws and phytosanitary regulations. Factors contributing to Centers' distributions of PGRFA included the extent of accession-level information, users' capacity to identify the materials they want, and policies. The genebanks' rates of both acquisition and distribution increased over the last decade. The paper ends on a cautionary note concerning the potential of unresolved tensions regarding access and benefit sharing and digital genomic sequence information to undermine international cooperation to conserve and use PGRFA.

17.
Nat Commun ; 11(1): 4572, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917907

RESUMO

Undomesticated wild species, crop wild relatives, and landraces represent sources of variation for wheat improvement to address challenges from climate change and the growing human population. Here, we study 56,342 domesticated hexaploid, 18,946 domesticated tetraploid and 3,903 crop wild relatives in a massive-scale genotyping and diversity analysis. Using DArTseqTM technology, we identify more than 300,000 high-quality SNPs and SilicoDArT markers and align them to three reference maps: the IWGSC RefSeq v1.0 genome assembly, the durum wheat genome assembly (cv. Svevo), and the DArT genetic map. On average, 72% of the markers are uniquely placed on these maps and 50% are linked to genes. The analysis reveals landraces with unexplored diversity and genetic footprints defined by regions under selection. This provides fertile ground to develop wheat varieties of the future by exploring specific gene or chromosome regions and identifying germplasm conserving allelic diversity missing in current breeding programs.


Assuntos
Variação Genética , Genoma de Planta , Triticum/genética , Alelos , Domesticação , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Tetraploidia
18.
BMC Genomics ; 10: 458, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19788762

RESUMO

BACKGROUND: Triticum monococcum (2n = 2x = 14) is an ancient diploid wheat with many useful traits and is used as a model for wheat gene discovery. DArT (Diversity Arrays Technology) employs a hybridisation-based approach to type thousands of genomic loci in parallel. DArT markers were developed for T. monococcum to assess genetic diversity, compare relationships with hexaploid genomes, and construct a genetic linkage map integrating DArT and microsatellite markers. RESULTS: A DArT array, consisting of 2304 hexaploid wheat, 1536 tetraploid wheat, 1536 T. monococcum as well as 1536 T. boeoticum representative genomic clones, was used to fingerprint 16 T. monococcum accessions of diverse geographical origins. In total, 846 polymorphic DArT markers were identified, of which 317 were of T. monococcum origin, 246 of hexaploid, 157 of tetraploid, and 126 of T. boeoticum genomes. The fingerprinting data indicated that the geographic origin of T. monococcum accessions was partially correlated with their genetic variation. DArT markers could also well distinguish the genetic differences amongst a panel of 23 hexaploid wheat and nine T. monococcum genomes. For the first time, 274 DArT markers were integrated with 82 simple sequence repeat (SSR) and two morphological trait loci in a genetic map spanning 1062.72 cM in T. monococcum. Six chromosomes were represented by single linkage groups, and chromosome 4Am was formed by three linkage groups. The DArT and SSR genetic loci tended to form independent clusters along the chromosomes. Segregation distortion was observed for one third of the DArT loci. The Ba (black awn) locus was refined to a 23.2 cM region between the DArT marker locus wPt-2584 and the microsatellite locus Xgwmd33 on 1Am; and the Hl (hairy leaf) locus to a 4.0 cM region between DArT loci 376589 and 469591 on 5Am. CONCLUSION: DArT is a rapid and efficient approach to develop many new molecular markers for genetic studies in T. monococcum. The constructed genetic linkage map will facilitate localisation and map-based cloning of genes of interest, comparative mapping as well as genome organisation and evolution studies between this ancient diploid species and other crops.


Assuntos
Mapeamento Cromossômico/métodos , Variação Genética , Genoma de Planta , Repetições de Microssatélites , Triticum/genética , Cromossomos de Plantas , Hibridização Genômica Comparativa , DNA de Plantas/genética , Ligação Genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Poliploidia , Característica Quantitativa Herdável , Análise de Sequência de DNA
19.
BMC Genomics ; 10: 578, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19958552

RESUMO

BACKGROUND: Implementation of molecular breeding in rye (Secale cereale L.) improvement programs depends on the availability of high-density molecular linkage maps. However, the number of sequence-specific PCR-based markers available for the species is limited. Diversity Arrays Technology (DArT) is a microarray-based method allowing for detection of DNA polymorphism at several thousand loci in a single assay without relying on DNA sequence information. The objective of this study was the development and application of Diversity Arrays technology for rye. RESULTS: Using the PstI/TaqI method of complexity reduction we created a rye diversity panel from DNA of 16 rye varieties and 15 rye inbred lines, including parents of a mapping population consisting of 82 recombinant inbred lines. The usefulness of a wheat diversity panel for identification of DArT markers for rye was also demonstrated. We identified 1022 clones that were polymorphic in the genotyped ILs and varieties and 1965 clones that differentiated the parental lines L318 and L9 and segregated in the mapping population. Hierarchical clustering and ordination analysis were performed based on the 1022 DArT markers to reveal genetic relationships between the rye varieties and inbred lines included in the study. Chromosomal location of 1872 DArT markers was determined using wheat-rye addition lines and 1818 DArT markers (among them 1181 unique, non-cosegregating) were placed on a genetic linkage map of the cross L318 x L9, providing an average density of one unique marker every 2.68 cM. This is the most saturated rye linkage map based solely on transferable markers available at the moment, providing rye breeders and researches with a better choice of markers and a higher probability of finding polymorphic markers in the region of interest. CONCLUSION: The Diversity Arrays Technology can be efficiently and effectively used for rye genome analyses - assessment of genetic similarity and linkage mapping. The 11520-clone rye genotyping panel with several thousand markers with determined chromosomal location and accessible through an inexpensive genotyping service is a valuable resource for studies on rye genome organization and in molecular breeding of the species.


Assuntos
Mapeamento Cromossômico/métodos , Variação Genética , Genoma de Planta/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Secale/genética , Cruzamento , Cromossomos de Plantas/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Marcadores Genéticos , Taq Polimerase/metabolismo
20.
BMC Genomics ; 10: 39, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19159465

RESUMO

BACKGROUND: Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and apply a large set of oat genetic markers based on Diversity Array Technology (DArT). RESULTS: Approximately 19,000 genomic clones were isolated from complexity-reduced genomic representations of pooled DNA samples from 60 oat varieties of global origin. These were screened on three discovery arrays, with more than 2000 polymorphic markers being identified for use in this study, and approximately 2700 potentially polymorphic markers being identified for use in future studies. DNA sequence was obtained for 2573 clones and assembled into a non-redundant set of 1770 contigs and singletons. Of these, 705 showed highly significant (Expectation < 10E-10) BLAST similarity to gene sequences in public databases. Based on marker scores in 80 recombinant inbred lines, 1010 new DArT markers were used to saturate and improve the 'Kanota' x 'Ogle' genetic map. DArT markers provided map coverage approximately equivalent to existing markers. After binning markers from similar clones, as well as those with 99% scoring similarity, a set of 1295 non-redundant markers was used to analyze genetic diversity in 182 accessions of cultivated oat of worldwide origin. Results of this analysis confirmed that major clusters of oat diversity are related to spring vs. winter type, and to the presence of major breeding programs within geographical regions. Secondary clusters revealed groups that were often related to known pedigree structure. CONCLUSION: These markers will provide a solid basis for future efforts in genomic discovery, comparative mapping, and the generation of an oat consensus map. They will also provide new opportunities for directed breeding of superior oat varieties, and guidance in the maintenance of oat genetic diversity.


Assuntos
Avena/genética , Mapeamento Cromossômico/métodos , Marcadores Genéticos , Genoma de Planta , Análise por Conglomerados , DNA de Plantas/genética , Biblioteca Genômica , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa