Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Scand Cardiovasc J ; 51(3): 159-166, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28276718

RESUMO

OBJECTIVES: Pharmacological treatment of reperfusion injury using insulin and GSK3ß inhibition has been shown to be cardioprotective, however, their interaction with the endogenous cardioprotective strategy, ischemic postconditioning, is not known. DESIGN: Langendorff perfused ex vivo rat hearts were subjected to 30 min of regional ischemia and 120 min of reperfusion. For the first 15 min of reperfusion hearts received either vehicle (Ctr), insulin (Ins) or a GSK3ß inhibitor (SB415286; SB41), with or without interruption of ischemic postconditioning (IPost; 3 × 30 s of global ischemia). In addition, the combination of insulin and SB41 for 15 min was assessed. RESULTS: Insulin, SB41 or IPost significantly reduced infarct size versus vehicle treated controls (IPost 33.5 ± 3.3%, Ins 33.5 ± 3.4%, SB41 30.5 ± 3.0% vs. Ctr 54.7 ± 6.8%, p < 0.01). Combining insulin and SB415286 did not confer additional cardioprotection compared to the treatments given alone (SB41 + Ins 26.7 ± 3.5%, ns). Conversely, combining either of the pharmacological reperfusion treatments with IPost completely abrogated the cardioprotection afforded by the treatments separately (Ins + IPost 59.5 ± 3.4% vs. Ins 33.5 ± 3.4% and SB41 + IPost 50.2 ± 6.6% vs. SB41 30.5 ± 3.0%, both p < 0.01), and was associated with blunted Akt, GSK3ß and STAT3 phosphorylation. CONCLUSION: Pharmacological reperfusion treatment with insulin and SB41 interferes with the cardioprotection afforded by ischemic postconditioning.


Assuntos
Aminofenóis/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Insulina/farmacologia , Pós-Condicionamento Isquêmico/métodos , Maleimidas/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Preparação de Coração Isolado , Masculino , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Basic Clin Pharmacol Toxicol ; 115(5): 438-47, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24751184

RESUMO

In an open-chest porcine model, we examined whether myocardial pharmacological conditioning at the time of reperfusion with low-dose insulin or insulin-like growth factor 2 (IGF2), not affecting serum glucose levels, could reduce infarct size and improve functional recovery. Two groups of anaesthetized pigs with either 60 or 40 min. of left anterior descending artery occlusion (total n = 42) were randomized to receive either 0.9% saline, insulin or IGF2 infusion for 15 min., starting 5 min. before a 180-min. reperfusion period. Repeated fluorescent microsphere injections were used to confirm ischaemia and reperfusion. Area at risk and infarct size was determined with Evans blue and triphenyltetrazolium chloride staining. Local myocardial function was evaluated with multi-layer radial tissue Doppler strain and speckle-tracking strain from epicardial echocardiography. Western blotting and TUNEL staining were performed to explore apoptosis. Infarct size did not differ between treatment groups and was 56.7 ± 6.8%, 49.7 ± 9.6%, 56.2 ± 8.0% of area at risk for control, insulin and IGF2 group, respectively, in the 60-min. occlusion series. Corresponding values were 45.6 ± 6.0%, 48.4 ± 7.2% and 34.1 ± 5.8% after 40-min. occlusion. Global and local cardiac function did not differ between treatment groups. No differences related to treatment could be found in myocardial tissue cleaved caspase-3 content or the degree of TUNEL staining. Reperfusion therapy with low-dose insulin or with IGF2 neither reduced infarct size nor improved function in reperfused myocardium in this in vivo porcine model.


Assuntos
Fator de Crescimento Insulin-Like II/farmacologia , Insulina/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Ecocardiografia , Feminino , Marcação In Situ das Extremidades Cortadas , Insulina/administração & dosagem , Fator de Crescimento Insulin-Like II/administração & dosagem , Masculino , Suínos , Fatores de Tempo
3.
Regul Pept ; 174(1-3): 90-7, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22209828

RESUMO

Corticotrophin-releasing factor receptor 2ß (CRFR2ß) is expressed in the myocardium. In the present study we explore whether acute treatment with the neuropeptide corticotrophin-releasing factor (CRF) could induce cytoprotection against a lethal ischemic insult in the heart (isolated murine neonatal cardiac myocytes and the isolated Langendorff perfused rat heart) by activating CRFR2. In vitro, CRF offered cytoprotection when added prior to lethal simulated ischemic stress by reducing apoptotic and necrotic cell death. Ex vivo, CRF significantly reduced infarct size from 52.1±3.1% in control hearts to 35.3±3.1% (P<0.001) when administered prior to a lethal ischemic insult. The CRF peptide did not confer cytoprotection when administered at the point of hypoxic reoxygenation or ischemic reperfusion. The acute effects of CRF treatment are mediated by CRF receptor type 2 (CRFR2) since the cardioprotection ex vivo was inhibited by the CRFR2 antagonist astressin-2B. Inhibition of the mitogen activated protein kinase-ERK1/2 by PD98059 failed to inhibit the effect of CRF. However, both protein kinase A and protein kinase C inhibitors abrogated CRF-mediated protection both ex vivo and in vitro. These data suggest that the CRF peptide reduces both apoptotic and necrotic cell death in cardiac myocytes subjected to lethal ischemic induced stress through activation of PKA and PKC dependent signaling pathways downstream of CRFR2.


Assuntos
Isquemia Encefálica/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miocárdio/metabolismo , Proteína Quinase C/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Transdução de Sinais/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Isquemia Encefálica/enzimologia , Isquemia Encefálica/prevenção & controle , Morte Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Coração/efeitos dos fármacos , Isoquinolinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Proteína Quinase C/antagonistas & inibidores , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
4.
Exp Biol Med (Maywood) ; 237(2): 219-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22328594

RESUMO

Daunorubicin (DNR) and doxorubicin (DOX) are two of the most effective anthracycline drugs known for the treatment of systemic neoplasms and solid tumors. However, their clinical use is hampered due to profound cardiotoxicity. The mechanism by which DNR injures the heart remains to be fully elucidated. Recent reports have indicated that DOX activates ubiquitin proteasome-mediated degradation of specific transcription factors; however, no reports exist on the effect of DNR on the E3 ubiquitin ligases, MURF-1 (muscle ring finger 1) and MAFbx (muscle atrophy F-box). The aim of this study was to investigate the effect of DNR treatment on the protein and organelle degradation systems in the heart and to elucidate some of the signalling mechanisms involved. Adult rats were divided into two groups where one group received six intraperitoneal injections of 2 mg/kg DNR on alternate days and the other group received saline injections as control. Hearts were excised and perfused on a working heart system the day after the last injection and freeze-clamped for biochemical analysis. DNR treatment significantly attenuated cardiac function and increased apoptosis in the heart. DNR-induced cardiac cytotoxicity was associated with upregulation of the E3 ligases, MURF-1 and MAFbx and also caused significant increases in two markers of autophagy, beclin-1 and LC3. These changes observed in the heart were also associated with attenuation of the phosphoinositide 3-kinase/Akt signalling pathway.


Assuntos
Daunorrubicina/farmacologia , Regulação Enzimológica da Expressão Gênica , Miocárdio/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proteínas Reguladoras de Apoptose/biossíntese , Proteína Beclina-1 , Caspase 3/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Proteínas com Motivo Tripartido , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa