Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(25): e202304228, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415315

RESUMO

Colloidal and supported manganese nanoparticles were synthesized following an organometallic approach and applied in the catalytic transfer hydrogenation (CTH) of aldehydes and ketones. Reaction parameters for the preparation of colloidal nanoparticles (NPs) were optimized to yield small (2-2.5 nm) and well-dispersed NPs. Manganese NPs were further immobilized on an imidazolium-based supported ionic phase (SILP) and characterized to evaluate NP size, metal loading, and oxidation states. Oxidation of the Mn NPs by the support was observed resulting in an average formal oxidation state of +2.5. The MnOx@SILP material showed promising performance in the CTH of aldehydes and ketones using 2-propanol as a hydrogen donor, outperforming previously reported Mn NPs-based CTH catalysts in terms of metal loading-normalized turnover numbers. Interestingly, MnOx@SILP were found to lose activity upon air exposure, which correlates with an additional increase in the average oxidation state of Mn as revealed by X-ray absorption spectroscopic studies.

2.
J Am Chem Soc ; 145(51): 27922-27932, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38086018

RESUMO

The research presented herein explores a cobalt-based catalytic system, distinctively featuring a cooperative boron-centric element within its intricate ligand architecture. This system is strategically engineered to enable the integration of a singular carbon atom into aldehydes, a process culminating in the production of (Z)-silyl enol ethers. Beyond offering an efficient one-pot synthesis route, this method adeptly overcomes challenges inherent to conventional techniques, such as the need for large amounts of additives, restrictive functional group tolerance, and extreme reaction temperatures. Initial mechanistic studies suggest the potential role of a cobalt-carbene complex as a catalytically significant species and underscore the importance of the borane segment. Collectively, these observations highlight the potential of this system in advancing complex bond activation pursuits.

3.
Angew Chem Int Ed Engl ; 62(23): e202219127, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856294

RESUMO

The selective activation of C-F bonds under mild reaction conditions remains an ongoing challenge of bond activation. Here, we present a cooperative [Rh/P(O)nBu2 ] template for catalytic hydrodefluorination (HDF) of perfluoroarenes. In addition to substrates presenting electron-withdrawing functional groups, the system showed an exceedingly rare tolerance for electron-donating functionalities and heterocycles. The high chemoselectivity of the catalyst and its readiness to be deployed at a preparative scale illustrate its practicality. Empirical mechanistic studies and a density functional theory (DFT) study have identified a rhodium(I) dihydride complex as a catalytically relevant species and the determining role of phosphine oxide as a cooperative fragment. Altogether, we demonstrate that molecular templates based on these design elements can be assembled to create catalysts with increased reactivity for challenging bond activations.

4.
Angew Chem Int Ed Engl ; 61(36): e202205515, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759682

RESUMO

An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene.

5.
Inorg Chem ; 60(24): 19062-19078, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34851088

RESUMO

Coordination compounds of earth-abundant 3d transition metals are among the most effective catalysts for the electrochemical reduction of carbon dioxide (CO2). While the properties of the metal center are crucial for the ability of the complexes to electrochemically activate CO2, systematic variations of the metal within an identical, redox-innocent ligand backbone remain insufficiently investigated. Here, we report on the synthesis, structural and spectroscopic characterization, and electrochemical investigation of a series of 3d transition-metal complexes [M = Mn(I), Fe(II), Co(II), Ni(II), Cu(I), and Zn(II)] coordinated by a new redox-innocent PNP pincer ligand system. Only the Fe, Co, and Ni complexes reveal distinct metal-centered electrochemical reductions from M(II) down to M(0) and show indications for interaction with CO2 in their reduced states. The Ni(0) d10 species associates with CO2 to form a putative Aresta-type Ni-η2-CO2 complex, where electron transfer to CO2 through back-bonding is insufficient to enable electrocatalytic activity. By contrast, the Co(0) d9 intermediate binding CO2 can undergo additional electron uptake into a formal cobalt(I) metallacarboxylate complex able to promote turnover. Our data, together with the few literature precedents, single out that an unsaturated coordination sphere (coordination number = 4 or 5) and a d7-to-d9 configuration in the reduced low oxidation state (+I or 0) are characteristics that foster electrochemical CO2 activation for complexes based on redox-innocent ligands.

6.
Angew Chem Int Ed Engl ; 60(51): 26500-26505, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34596302

RESUMO

The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4 )(HN(C2 H4 PPh2 )2 )] (Ru-MACHO-BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2.

7.
Angew Chem Int Ed Engl ; 60(21): 11628-11686, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33464678

RESUMO

The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.

8.
Angew Chem Int Ed Engl ; 59(36): 15674-15681, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32343876

RESUMO

The catalytic reduction of carbon dioxide (CO2 ) is considered a major pillar of future sustainable energy systems and chemical industries based on renewable energy and raw materials. Typically, catalysts and catalytic systems are transforming CO2 preferentially or even exclusively to one of the possible reduction levels and are then optimized for this specific product. Here, we report a cobalt-based catalytic system that enables the adaptive and highly selective transformation of carbon dioxide individually to either the formic acid, the formaldehyde, or the methanol level, demonstrating the possibility of molecular control over the desired product platform.

9.
Angew Chem Int Ed Engl ; 58(49): 17589-17593, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532866

RESUMO

Terminal metal nitrides have been proposed as key intermediates in a series of pivotal chemical transformations. However, exploring the chemical activity of transient tetragonal iron(V) nitrides is largely impeded by their facile dimerization in fluid solutions. Herein, in situ EPR and Mössbauer investigations are presented of unprecedented oxygenation of a paramagnetic iron(V) nitrido intermediate, [FeV N(cyclam-ac)]+ (2, cyclam-ac- =1,4,8,11-tetraazacyclotetradecane-1-acetate anion), yielding an iron nitrosyl complex, [Fe(NO)(cyclam-ac)]+ (3). Further theoretical studies suggest that during the reaction a closed-shell singlet O atom is transferred to 2. Consequently, the N-O bond formation does not follow a radical coupling mechanism proposed for the N-N bond formation but is accomplished by three mutual electron-transfer pathways between 2 and the O atom donor, thanks to the ambiphilic nature of 2.

10.
J Am Chem Soc ; 140(5): 1884-1893, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29332395

RESUMO

Traditional rhodium carbene chemistry relies on the controlled decomposition of diazo derivatives with [Rh2(OAc)4] or related dinuclear Rh(+2) complexes, whereas the use of other rhodium sources is much less developed. It is now shown that half-sandwich carbene species derived from [Cp*MX2]2 (M = Rh, Ir; X = Cl, Br, I, Cp* = pentamethylcyclopentadienyl) also exhibit favorable application profiles. Interestingly, the anionic ligand X proved to be a critical determinant of reactivity in the case of cyclopropanation, epoxide formation and the previously unknown catalytic metathesis of azobenzene derivatives, whereas the nature of X does not play any significant role in -OH insertion reactions. This perplexing disparity can be explained on the basis of spectral and crystallographic data of a representative set of carbene complexes of this type, which could be isolated despite their pronounced electrophilicity. Specifically, the donor/acceptor carbene 10a derived from ArC(═N2)COOMe and [Cp*RhCl2]2 undergoes spontaneous 1,2-migratory insertion of the emerging carbene unit into the Rh-Cl bond with formation of the C-metalated rhodium enolate 11. In contrast, the analogous complexes 10b,c derived from [Cp*RhX2]2 (X = Br, I) as well as the iridium species 13 and 14 derived from [Cp*IrCl2]2 are sufficiently stable and allow true carbene reactivity to be harnessed. These complexes are competent intermediates for the catalytic metathesis of azobenzene derivatives, which provides access to α-imino esters that would be difficult to make otherwise. Rather than involving metal nitrenes, the reaction proceeds via aza-ylides that evolve into diaziridines; a metastable compound of this type has been fully characterized.

11.
J Am Chem Soc ; 138(11): 3797-805, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26910883

RESUMO

Owing to its tremendous preparative importance, rhodium carbene chemistry has been studied extensively during past decades. The invoked intermediates have, however, so far proved too reactive for direct inspection, and reliable experimental information has been extremely limited. A series of X-ray structures of pertinent intermediates of this type, together with supporting spectroscopic data, now closes this gap and provides a detailed picture of the constitution and conformation of such species. All complexes were prepared by decomposition of a diazoalkane precursor with an appropriate rhodium source; they belong to either the dirhodium(II) tetracarboxylate carbene series that enjoys widespread preparative use, or to the class of mononuclear half-sandwich carbenes of Rh(III), which show considerable potential. The experimental data correct or refine previous computational studies but corroborate the currently favored model for the prediction of the stereochemical course of rhodium catalyzed cyclopropanations, which is likely also applicable to other reactions. Emphasis is put on stereoelectronic rather than steric arguments, with the dipole of the acceptor substituent flanking the carbene center being the major selectivity determining factor. Moreover, the very subtle influence exerted by the anionic ligands on a Rh(III) center on the chemical character of the resulting carbenes species is documented by the structures of a homologous series of halide complexes. Finally, the isolation of a N-bonded Rh(II) diazoalkane complex showcases that steric hindrance represents an inherent limitation of the chosen methodology.

12.
Angew Chem Int Ed Engl ; 55(36): 10760-5, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27484943

RESUMO

For the first time, the stereochemical course of an asymmetric cyclopropanation can be discussed on the basis of experimental structural information on a pertinent chiral dirhodium carbene intermediate. Key to success was the formation of racemic single crystals of a heterochiral [Rh2 {(S*)-PTTL}4 {=C(Ar)COOMe}][Rh2 {(R*)-PTTL}4 ] (Ar=MeOC6 H4 ; PTTL=N-phthaloyl-tert-leucinate) capsule, which has been characterized by X-ray diffraction. NMR spectroscopic data confirm that the obtained structural portrait is also relevant in solution and provide additional information about the dynamics of this species. The chiral binding pocket is primarily defined by the conformational preferences of the N-phthaloyl-protected amino acid ligands and reinforced by a network of weak interligand interactions that get stronger when chlorinated phthalimide residues are used.

13.
Inorg Chem ; 54(15): 7617-26, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26172528

RESUMO

The two MeCN ligands in [Ru(2-C6H4-2'-Py-κC,N)(Phen, trans-C)(MeCN)2]PF6 (1), both trans to a sp(2) hybridized N atom, cannot be substituted by any other ligand. In contrast, the isomerized derivative [Ru(2-C6H4-2'-Py-κC,N)(Phen, cis-C)(MeCN)2]PF6 (2), in which one MeCN ligand is now trans to the C atom of the phenyl ring orthometalated to Ru, leads to fast and quantitative substitution reactions with several monodentate ligands. With PPh3, 2 affords [Ru(2-C6H4-2'-Py-κC,N)(Phen, cis-C)(PPh3)(MeCN)]PF6 (3), in which PPh3 is trans to the C σ bound to Ru. Compound 3 is not kinetically stable, because, under thermodynamic control, it leads to 4, in which the PPh3 is trans to a N atom of the Phen ligand. Dimethylsulfoxide (DMSO) can also substitute a MeCN ligand in 2, leading to 5, in which DMSO is coordinated to Ru via its S atom trans to the N atom of the Phen ligand, the isomer under thermodynamic control being the only compound observed. We also found evidence for the fast to very fast substitution of MeCN in 2 by water or a chloride anion by studying the electronic spectra of 2 in the presence of water or NBu4Cl, respectively. An isomerization related to that observed between 3 and 4 is also found for the known monophosphine derivative [Ru(2-C6H4-2'-Py-κC,N)(PPh3, trans-C)(MeCN)3]PF6 (10), in which the PPh3 is located trans to the C of the cyclometalated 2-phenylpyridine, since, upon treatment by refluxing MeCN, it leads to its isomer 11, [Ru(2-C6H4-2'-Py-κC,N)(PPh3, cis-C)(MeCN)3]PF6. Further substitutions are also observed on 11, whereby N^N chelates (N^N = 2,2'-bipyridine and phenanthroline) substitute two MeCN ligands, affording [Ru(2-C6H4-2'-Py-κC,N)(PPh3, cis-C)(N^N)(MeCN)]PF6 (12a and 12b). Altogether, the behavior of the obtained complexes by ligand substitution reactions can be rationalized by an antisymbiotic effect on the Ru center, trans to the C atom of the cyclometalated unit, leading to compounds having the least nucleophilic ligand trans to C whenever an isomerization, involving either a monodentate or a bidentate ligand, is possible.


Assuntos
Antineoplásicos/química , Carbono/química , Compostos Organometálicos/química , Fosfinas/química , Rutênio/química , Dimetil Sulfóxido/química , Ligantes , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Água/química
14.
Angew Chem Int Ed Engl ; 54(51): 15452-6, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26534892

RESUMO

The dirhodium carbene derived from bis(4-methoxyphenyl)diazomethane and [Rh(tpa)4 ]⋅CH2 Cl2 (tpa=triphenylacetate) was characterized by UV, IR, and NMR spectroscopy, HRMS, as well as by X-ray diffraction. The isolated complex exhibits prototypical rhodium carbene reactivity in that it cyclopropanates 4-methoxystyrene at low temperature. Experimental structural information on this important type of reactive intermediate is extremely scarce and thus serves as a reference point for mechanistic discussions of rhodium catalysis in general. Moreover, dirhodium carbenes are shown to undergo remarkably facile carbene transfer on treatment with [LAuNTf2 ] (L=phosphine). This formal transmetalation opens a valuable new entry into gold carbene complexes that cannot easily be made otherwise; three fully characterized representatives illustrate this aspect.

15.
Angew Chem Int Ed Engl ; 53(37): 9827-31, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25044571

RESUMO

Hemichelation is emerging as a new mode of coordination where non-covalent interactions crucially contribute to the cohesion of electron-unsaturated organometallic complexes. This study discloses an unprecedented demonstration of this concept to a Group 9 metal, that is, Rh(I). The syntheses of new 14-electron Rh(I) complexes were achieved by choosing the anti-[(η(6):η(6)-fluorenyl){Cr(CO)3}2] anion as the ambiphilic hemichelating ligand, which was treated with [{Rh(nbd)Cl}2] (nbd=norbornadiene) and [{Rh(CO)2Cl}2]. The new T-shaped Rh(I) hemichelates were characterized by analytical and structural methods. Investigations using the methods of the DFT and electron-density topology analysis (NCI region analysis, QTAIM theory) confirmed the closed-shell, non-covalent and attractive characters of the interaction between the Rh(I) center and the proximal Cr(CO)3 moiety. This study shows that, by appropriate tuning of the electronic properties of the ambiphilic ligand, truly coordination-unsaturated Rh(I) complexes can be synthesized in a manageable form.

16.
J Am Chem Soc ; 135(47): 17839-52, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24182317

RESUMO

A rational method of synthesis of stable neutral T-shaped 14 electron Pd and Pt complexes is proposed. It takes advantage of the ambiphilic character of the tricarbonyl(η(6)-indenyl)chromium anion, of which the main property is to behave as a hemichelating ligand, that is a nonconventional heteroditopic ligand capable of chelating a metal center by way of covalent and noncovalent bonding, thus preserving its unsaturated valence shell. The reaction of the in situ formed tricarbonyl(η(6)-2-methylindenyl)chromium anion with a series of Pd and Pt metallacycles afforded new air-stable and persistent synfacial heterobimetallic complexes in which the metallacycle binds the indenyl fragment via its metal in an η(1) fashion, leaving the fourth coordination site at the chelated metal virtually vacant. The structures of eight of these novel complexes are disclosed, and their bonding features are investigated by an array of theoretical methods based on the density functional theory (NBO, EDA, ETS-NOCV, AIM, NCI region analysis). Theory shows that the formation of these unusual structures of bimetallic synfacial η(1)-indenyl-Pd/Pt complexes is driven thermodynamically by attractive Coulombic occlusion of the fourth vacant coordination site at Pd/Pt centers by the Cr(CO)3 moiety.

17.
J Am Chem Soc ; 135(5): 1715-8, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23317421

RESUMO

Highly fluxional, solution-persistent, and formally electron-deficient (32e(-)) binuclear Pd(II)-C(0) complexes of 2-methyl-1H-indene were synthesized and structurally characterized by X-ray diffraction analysis. DFT investigations combined with a number of theoretical analyses of the bond framework suggest that the polar intermetallic interaction possesses no major covalent character. Instead of bearing a static metal-metal bond as suggested by structural X-ray diffraction analysis, the complexes display in solution significant fluxionality through haptotropy, i.e., a formal "oscillation" of the Pd(η(3)-allyl) moiety between two limiting η(1)-indenyl configurations.


Assuntos
Cromo/química , Complexos de Coordenação/química , Indenos/química , Paládio/química , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
18.
Chem Sci ; 14(11): 2799-2807, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937594

RESUMO

The stepwise catalytic reduction of carbon dioxide (CO2) to formic acid, formaldehyde, and methanol opens non-fossil pathways to important platform chemicals. The present article aims at identifying molecular control parameters to steer the selectivity to the three distinct reduction levels using organometallic catalysts of earth-abundant first-row metals. A linear scaling relationship was developed to map the intrinsic reactivity of 3d transition metal pincer complexes to their activity and selectivity in CO2 hydrosilylation. The hydride affinity of the catalysts was used as a descriptor to predict activity/selectivity trends in a composite volcano picture, and the outstanding properties of cobalt complexes bearing bis(phosphino)triazine PNP-type pincer ligands to reach the three reduction levels selectively under different reaction conditions could thus be rationalized. The implications of the composite volcano picture were successfully experimentally validated with selected catalysts, and the challenging intermediate level of formaldehyde could be accessed in over 80% yield with the cobalt complex 6. The results underpin the potential of tandem computational-experimental approaches to propel catalyst design for CO2-based chemical transformations.

19.
Chem Sci ; 14(1): 54-60, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36605749

RESUMO

The development of earth-abundant catalysts for the selective conversion of silanes to silanols with water as an oxidant generating valuable hydrogen as the only by-product continues to be a challenge. Here, we demonstrate that [MnBr(CO)5] is a highly active precatalyst for this reaction, operating under neutral conditions and avoiding the undesired formation of siloxanes. As a result, a broad substrate scope, including primary and secondary silanes, could be converted to the desired products. The turnover performances of the catalyst were also examined, yielding a maximum TOF of 4088 h-1. New light was shed on the debated mechanism of the interaction between [MnBr(CO)5] and Si-H bonds based on the reaction kinetics (including KIEs of PhMe2SiD and D2O) and spectroscopic techniques (FT-IR, GC-TCD, 1H-, 29Si-, and 13C-NMR). The initial activation of [MnBr(CO)5] was found to result from the formation of a manganese(i) hydride species and R3SiBr, and the experimental data are most consistent with a catalytic cycle comprising a cationic tricarbonyl Mn(i) unit as the active framework.

20.
JACS Au ; 1(2): 130-136, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-34467278

RESUMO

Alcohol-assisted hydrogenation of carbon monoxide (CO) to methanol was achieved using homogeneous molecular complexes. The molecular manganese complex [Mn(CO)2Br[HN(C2H4P i Pr2)2]] ([HN(C2H4P i Pr2)2] = MACHO- i Pr) revealed the best performance, reaching up to turnover number = 4023 and turnover frequency 857 h-1 in EtOH/toluene as solvent under optimized conditions (T = 150 °C, p(CO/H2) = 5/50 bar, t = 8-12 h). Control experiments affirmed that the reaction proceeds via formate ester as the intermediate, whereby a catalytic amount of base was found to be sufficient to mediate its formation from CO and the alcohol in situ. Selectivity for methanol formation reached >99% with no accumulation of the formate ester. The reaction was demonstrated to work with methanol as the alcohol component, resulting in a reactive system that allows catalytic "breeding" of methanol without any coreagents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa