Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(15): 2353-2360, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35414177

RESUMO

Under atmospheric conditions, NO2 is in equilibrium with its dimers, N2O4, which can exist in the form of constitutional isomers and stereoisomers whose relative stabilities and reactivities are still being debated. Experimental limitations facing the spectroscopic characterization of the isomers of N2O4 prevent us from determining their relative contributions to reaction mechanisms possibly causing discrepancies in the reported reaction orders and rates. Using reflection-absorption infrared spectroscopy, molecular beam deposition, and matrix isolation techniques, it is shown that the relative abundances of NO2 and its dimers can be controlled by heating or cooling the deposited gas. The comparison of spectra acquired from samples prepared using molecular beam deposition with those obtained using tube dosing deposition demonstrates how the N2O4 isomer distributions are sensitive to details of the experimental conditions and sample preparation protocols. These observations not only provide a better understanding of a possible source for the disagreements found in the literature, but also a methodology to control and quantify the chemical speciation in NO2 vapors in terms of the relative abundances of NO2 and of the various isomers of N2O4.

2.
J Chem Phys ; 156(7): 074304, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35183072

RESUMO

Confinement effects on the ro-translational (RT) dynamics of water, trapped in rare gas matrices or within endofullerenes (i.e., H2O@C60), can be experimentally assessed using rotationally resolved far-infrared, or mid-infrared, spectroscopy [Putaud et al., J. Chem. Phys. 156, 074305 (2022) (Paper II)]. The confined rotor model is used here to reveal how the quantized rotational and frustrated translational energy levels of confined water interact and mix by way of the confinement-induced rotation-translation coupling (RTC). An eccentric but otherwise isotropic 3D harmonic effective potential is used to account for confinement effects, thereby allowing the dependence of the magnitude of the RTC on the topology of the model confinement potential, the resulting intricate mixing schemes, and their impact on the RT energy levels to be examined in detail. The confined rotor model thus provides a convenient framework to investigate the matrix and isotope effects on the RT dynamics of water under extreme confinement probed spectroscopically, thereby potentially providing insight into the mechanisms and rates for ortho-H2O ↔ para-H2O nuclear spin isomer interconversion in confined water.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa