Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(4): e0250175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891595

RESUMO

CD44 is a transmembrane glycoprotein that binds to hyaluronic acid, plays roles in a number of cellular processes and is expressed in a variety of cell types. It is up-regulated in stem cells and cancer. Anti-CD44 monoclonal antibodies affect cell motility and aggregation, and repress tumorigenesis and metastasis. Here we describe four new anti-CD44 monoclonal antibodies originating from B cells of a mouse injected with a plasmid expressing CD44 isoform 12. The four monoclonal antibodies bind to the terminal, extracellular, conserved domain of CD44 isoforms. Based on differences in western blot patterns of cancer cell lysates, the four anti-CD44 mAbs separated into three distinct categories that include P4G9, P3D2, and P3A7, and P3G4. Spot assay analysis with peptides generated in Escherichia coli support the conclusion that the monoclonal antibodies recognize unglycosylated sequences in the N-terminal conserved region between amino acid 21-220, and analyses with a peptide generated in human embryonic kidney 293 cells, demonstrate that these monoclonal antibodies bind to these peptides only after deglycosylation. Western blots with lysates from three cancer cell lines demonstrate that several CD44 isoforms are unglycosylated in the anti-CD44 target regions. The potential utility of the monoclonal antibodies in blocking tumorigenesis was tested by co-injection of cells of the breast cancer-derived tumorigenic cell line MDA-MB-231 with the anti-CD44 monoclonal antibody P3D2 into the mammary fat pads of mice. All five control mice injected with MDA-MB-231 cells plus anti-IgG formed palpable tumors, while only one of the six test mice injected with MDA-MB-231 cells plus P3D2 formed a tiny tumor, while the remaining five were tumor-free, indicating that the four anti-CD44 mAbs may be useful therapeutically.


Assuntos
Anticorpos Monoclonais , Carcinogênese/imunologia , Receptores de Hialuronatos/imunologia , Células HEK293 , Humanos , Células MCF-7
2.
Cell Adh Migr ; 15(1): 224-248, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338608

RESUMO

We developed a computer-assisted platform using laser scanning confocal microscopy to 3D reconstruct in real-time interactions between metastatic breast cancer cells and human umbilical vein endothelial cells (HUVECs). We demonstrate that MB-231 cancer cells migrate toward HUVEC networks, facilitated by filopodia, migrate along the network surfaces, penetrate into and migrate within the HUVEC networks, exit and continue migrating along network surfaces. The system is highly amenable to 3D reconstruction and computational analyses, and assessments of the effects of potential anti-metastasis monoclonal antibodies and other drugs. We demonstrate that an anti-RHAMM antibody blocks filopodium formation and all of the behaviors that we found take place between MB-231 cells and HUVEC networks.


Assuntos
Neoplasias da Mama , Preparações Farmacêuticas , Movimento Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Pseudópodes
3.
mSphere ; 5(5)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968010

RESUMO

Candida albicans, a pervasive opportunistic pathogen, undergoes a unique phenotypic transition from a "white" phenotype to an "opaque" phenotype. The switch to opaque impacts gene expression, cell morphology, wall structure, metabolism, biofilm formation, mating, virulence, and colonization of the skin and gastrointestinal (GI) tract. Although the regulation of switching is complex, a paradigm has evolved from a number of studies, in which, in its simplest form, the transcription factors Efg1 and Wor1 play central roles. When EFG1 is upregulated under physiological conditions, it represses WOR1, an activator of white-to-opaque switching, and the cell expresses the white phenotype; when EFG1 is downregulated, WOR1 is derepressed and activates expression of the opaque phenotype. Deletion of either EFG1 or WOR1 supports this yin-yang model of regulation. Here, we demonstrate that this simple model is insufficient, since strains in which WOR1 and EFG1 are simultaneously deleted can still be induced to switch en masse from white to opaque. Opaque cells of double mutants (efg1-/- wor1-/- ) are enlarged and elongate, form an enlarged vacuole, upregulate mCherry under the control of an opaque-specific promoter, form opaque cell wall pimples, express the opaque phenotype in lower GI colonization, and, if MTL homozygous, form conjugation tubes in response to pheromone and mate. These results can be explained if the basic and simplified model is expanded to include a WOR1-independent alternative opaque pathway repressed by EFG1IMPORTANCE The switch from white to opaque in Candida albicans was discovered 33 years ago, but it is still unclear how it is regulated. A regulatory paradigm has emerged in which two transacting factors, Efg1 and Wor1, play central roles, Efg1 as a repressor of WOR1, which encodes an activator of the transition to the opaque phenotype. However, we show here that if both EFG1 and WOR1 are deleted simultaneously, bona fide opaque cells can still be induced en masse These results are not compatible with the simple paradigm, suggesting that an alternative opaque pathway (AOP) exists, which can activate expression of opaque and, like WOR1, is repressed by EFG1.


Assuntos
Candida albicans/genética , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Mutação , Fatores de Transcrição/genética , Animais , Feminino , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Camundongos Endogâmicos C57BL , Fenótipo
4.
MAbs ; 11(4): 691-708, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30810437

RESUMO

Breast cancer, melanoma and glioblastoma cells undergo cell-mediated aggregation and aggregate coalescence in a transparent 3D Matrigel environment. Cells from normal tissue and non-tumorigenic cell lines do not exhibit these behaviors. Here, 266 monoclonal antibodies (mAbs) demonstrated to interact with a wide variety of membrane, secreted and matrix proteins, have been screened for their capacity to block these tumorigenic cell-specific behaviors in a 3D environment. Remarkably, only six of the 266 tested mAbs exhibited blocking activity, four targeting integrin ß-1, one targeting integrin α-3 and one targeting CD44. Colocalization of integrins ß-1 and α-3 in fixed cells and in live aggregates suggests that the integrin α-3 ß-1 dimer plays a central role in cancer cell aggregation in the 3D environment provided by Matrigel. Our results suggest that blocking by anti-integrin and anti-CD44 mAbs involves interference in cell-cell interactions.


Assuntos
Neoplasias da Mama/metabolismo , Glioblastoma/metabolismo , Receptores de Hialuronatos/metabolismo , Integrina alfa3beta1/metabolismo , Melanoma/metabolismo , Anticorpos Bloqueadores/metabolismo , Anticorpos Monoclonais/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Agregação Celular , Linhagem Celular Tumoral , Movimento Celular , Colágeno , Combinação de Medicamentos , Feminino , Glioblastoma/patologia , Humanos , Receptores de Hialuronatos/imunologia , Integrina alfa3beta1/imunologia , Laminina , Melanoma/patologia , Proteoglicanas
5.
PLoS One ; 14(6): e0218854, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233557

RESUMO

Tumorigenic cells undergo cell aggregation and aggregate coalescence in a 3D Matrigel environment. Here, we expanded this 3D platform to assess the interactions of normal human dermal fibroblasts (NHDFs) and human primary mammary fibroblasts (HPMFs) with breast cancer-derived, tumorigenic cells (MDA-MB-231). Medium conditioned by MDA-MB-231 cells activates both types of fibroblasts, imbuing them with the capacity to accelerate the rate of aggregation and coalescence of MDA-MB-231 cells more than four fold. Acceleration is achieved 1) by direct physical interactions with MDA-MB-231 cells, in which activated fibroblasts penetrate the MDA-MB-231/Matrigel 3D environment and function as supporting scaffolds for MDA-MB-231 aggregation and coalescence, and 2) through the release of soluble accelerating factors, including matrix metalloproteinase (MMPs) and, in the case of activated NHDFs, SDF-1α/CXCL12. Fibroblast activation includes changes in morphology, motility, and gene expression. Podoplanin (PDPN) and fibroblast activation protein (FAP) are upregulated by more than nine-fold in activated NHDFs while activated HPMFs upregulate FAP, vimentin, desmin, platelet derived growth factor receptor A and S100A4. Overexpression of PDPN, but not FAP, in NHDF cells in the absence of MDA-MB-231-conditioned medium, activates NHDFs. These results reveal that complex reciprocal signaling between fibroblasts and cancer cells, coupled with their physical interactions, occurs in a highly coordinated fashion that orchestrates aggregation and coalescence, behaviors specific to cancer cells in a 3D environment. These in vitro interactions may reflect events involved in early tumorigenesis, particularly in cases of field cancerization, and may represent a new mechanism whereby cancer-associated fibroblasts (CAFs) promote tumor growth.


Assuntos
Neoplasias da Mama/fisiopatologia , Fibroblastos Associados a Câncer/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Agregação Celular , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Forma Celular , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Colágeno , Meios de Cultivo Condicionados , Combinação de Medicamentos , Feminino , Fibroblastos/patologia , Fibroblastos/fisiologia , Expressão Gênica , Humanos , Laminina , Metaloproteinases da Matriz/metabolismo , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Proteoglicanas , Transdução de Sinais , Esferoides Celulares/patologia , Esferoides Celulares/fisiologia , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
6.
Oncotarget ; 9(30): 21100-21121, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29765523

RESUMO

One possible approach to normalize mutant cells that are metastatic and tumorigenic, is to upregulate a functionally similar homolog of the mutated gene. Here we have explored this hypothesis by generating an overexpressor of TPTE2 (TPIP), a homolog of PTEN, in PTEN-/- mutants, the latter generated by targeted mutagenesis of a human epithelial cell line. Overexpression of TPTE2 normalized phenotypic changes associated with the PTEN mutation. The PTEN-/- -associated changes rescued by overexpressing TPTE2 included 1) accelerated wound healing in the presence or absence of added growth factors (GFs), 2) increased division rates on a 2D substrate in the presence of GFs, 3) adhesion and viability on a 2D substrate in the absence of GFs, 4) viability in a 3D Matrigel model in the absence of GFs and substrate adhesion 5) loss of apoptosis-associated annexin V cell surface binding sites. The results justify further exploration into the possibility that upregulating TPTE2 by a drug may reverse metastatic and tumorigenic phenotypes mediated in part by a mutation in PTEN. This strategy may also be applicable to other tumorigenic mutations in which a homolog to the mutated gene is present and can substitute functionally.

7.
Methods Mol Biol ; 1365: 265-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26498790

RESUMO

This chapter describes 2D quantitative methods for motion analysis as well as 3D motion analysis and reconstruction methods. Emphasis is placed on the analysis of dynamic cell shape changes that occur through extension and retraction of force generating structures such as pseudopodia and lamellipodia. Quantitative analysis of these structures is an underutilized tool in the field of cell migration. Our intent, therefore, is to present methods that we developed in an effort to elucidate mechanisms of basic cell motility, directed cell motion during chemotaxis, and metastasis. We hope to demonstrate how application of these methods can more clearly define alterations in motility that arise due to specific mutations or disease and hence, suggest mechanisms or pathways involved in normal cell crawling and treatment strategies in the case of disease. In addition, we present a 4D tumorigenesis model for high-resolution analysis of cancer cells from cell lines and human cancer tissue in a 3D matrix. Use of this model led to the discovery of the coalescence of cancer cell aggregates and unique cell behaviors not seen in normal cells or normal tissue. Graphic illustrations to visually display and quantify cell shape are presented along with algorithms and formulae for calculating select 2D and 3D motion analysis parameters.


Assuntos
Imageamento Tridimensional/métodos , Movimento , Linhagem Celular , Quimiotaxia , Dictyostelium/citologia , Humanos , Neutrófilos/citologia , Fenômenos Ópticos
8.
Methods Mol Biol ; 571: 455-71, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19763985

RESUMO

For decades, Dictyostelium discoideum has been an efficacious and attractive model system for the study of cell motility, primarily because cells become highly motile during the transition from growth phase to aggregation competence and because the haploid genome is readily amenable to mutation. These crawling amoebae, as well as other motile cells such as polymorphonuclear neutrophils (PMNs), extend pseudopodia, retract pseudopodia, and translocate across a substratum even in the absence of chemoattractant. This phenomenon, referred to as basic motile behavior, has been investigated in Dictyostelium through analysis of cytoskeletal mutants. Likewise, many chemotactic signal transduction pathways and networks have been inferred from studies of Dictyostelium mutants. However, before concluding from mutational analyses that a particular molecule or protein plays a role in chemotaxis, it is imperative to first precisely define its contribution, if any, to basic motile behavior. Here, we describe two-dimensional and three-dimensional technologies that can be coupled with 2D and 3D Dynamic Image Analysis System (2D and 3D-DIAS) software for the analysis of cell motility, shape changes, pseudopod formation, and localization of tagged molecules during basic motile behavior. In addition, we describe a method to analyze the 3D trajectories of microspheres attached to the surface of crawling Dictyostelium cells. We include information on microscopy, image acquisition techniques, and computer hardware that could be reproduced in a typical laboratory setting for motion analysis using 2D and 3D-DIAS software. Finally, we highlight features available in DIAS that have proven insightful in identifying defects in basic motile behavior exhibited by various cytoskeletal and putative signal transduction mutants.


Assuntos
Movimento Celular/fisiologia , Dictyostelium/citologia , Microscopia/métodos , Animais , Dictyostelium/metabolismo , Microscopia Confocal/métodos
9.
Cell Motil Cytoskeleton ; 53(2): 150-62, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12211111

RESUMO

Loss of either of the Ras pathway members RasS or GefB causes growing Dictyostelium cells to move aberrantly rapidly. In this study, we describe the changes in motility that underlie these phenotypes using computer-assisted 3D dynamic image analysis. Unexpectedly, the two mutants use different mechanisms to achieve rapid migration. The rasS(-) cells' motility is characterised by highly dynamic cell morphology, with rapidly extending and retracting pseudopodia. The gefB(-) cells do not have an unusually dynamic morphology, and achieve their efficient translocation by the continual remodelling of an existing dominant anterior pseudopodium. In spite of these dramatic changes in pseudopodium behaviour, the underlying motility cycle of both mutants remains normal. The levels of F-actin in both mutant cell lines are significantly elevated with respect to the wild-type parental cells, suggesting a possible biochemical basis for these emphatic phenotypes.


Assuntos
Movimento Celular/fisiologia , Dictyostelium/fisiologia , Proteínas de Protozoários/metabolismo , Pseudópodes/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Tamanho Celular , Genes de Protozoários , Processamento de Imagem Assistida por Computador , Mutação , Fenótipo , Proteínas de Protozoários/genética , Proteínas Ativadoras de ras GTPase/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa