Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxics ; 12(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276724

RESUMO

At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity.

2.
FEBS J ; 291(13): 2811-2835, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38362803

RESUMO

Neuronal differentiation is regulated by nerve growth factor (NGF) and other neurotrophins. We explored the impact of NGF on mitochondrial dynamics and metabolism through time-lapse imaging, metabolomics profiling, and computer modeling studies. We show that NGF may direct differentiation by stimulating fission, thereby causing selective mitochondrial network fragmentation and mitophagy, ultimately leading to increased mitochondrial quality and respiration. Then, we reconstructed the dynamic fusion-fission-mitophagy cycling of mitochondria in a computer model, integrating these processes into a single network mechanism. Both the computational model and the simulations are able to reproduce the proposed mechanism in terms of mitochondrial dynamics, levels of reactive oxygen species (ROS), mitophagy, and mitochondrial quality, thus providing a computational tool for the interpretation of the experimental data and for future studies aiming to detail further the action of NGF on mitochondrial processes. We also show that changes in these mitochondrial processes are intertwined with a metabolic function of NGF in differentiation: NGF directs a profound metabolic rearrangement involving glycolysis, TCA cycle, and the pentose phosphate pathway, altering the redox balance. This metabolic rewiring may ensure: (a) supply of both energy and building blocks for the anabolic processes needed for morphological reorganization, as well as (b) redox homeostasis.


Assuntos
Diferenciação Celular , Mitocôndrias , Dinâmica Mitocondrial , Mitofagia , Fator de Crescimento Neural , Neurônios , Espécies Reativas de Oxigênio , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Neurônios/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células PC12 , Ratos , Mitofagia/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glicólise , Simulação por Computador , Reprogramação Metabólica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa