Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Sleep Res ; 31(2): e13472, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34476847

RESUMO

The hormone fibroblast growth factor 21 (FGF21) modulates tissue metabolism and circulates at higher levels in metabolic conditions associated with chronic sleep-wake disruption, such as type 2 diabetes and obesity. In the present study, we investigated whether acute sleep loss impacts circulating levels of FGF21 and tissue-specific production, and response pathways linked to FGF21. A total of 15 healthy normal-weight young men participated in a randomised crossover study with two conditions, sleep loss versus an 8.5-hr sleep window. The evening before each intervention, fasting blood was collected. Fasting, post-intervention morning skeletal muscle and adipose tissue samples underwent quantitative polymerase chain reaction and DNA methylation analyses, and serum FGF21 levels were measured before and after an oral glucose tolerance test. Serum levels of FGF21 were higher after sleep loss compared with sleep, both under fasting conditions and following glucose intake (~27%-30%, p = 0.023). Fasting circulating levels of fibroblast activation protein, a protein which can degrade circulating FGF21, were not altered by sleep loss, whereas DNA methylation in the FGF21 promoter region increased only in adipose tissue. However, even though specifically the muscle exhibited transcriptional changes indicating adverse alterations to redox and metabolic homeostasis, no tissue-based changes were observed in expression of FGF21, its receptors, or selected signalling targets, in response to sleep loss. In summary, we found that acute sleep loss resulted in increased circulating levels of FGF21 in healthy young men, which may occur independent of a tissue-based stress response in metabolic peripheral tissues. Further studies may decipher whether changes in FGF21 signalling after sleep loss modulate metabolic outcomes associated with sleep or circadian disruption.


Assuntos
Diabetes Mellitus Tipo 2 , Estudos Cross-Over , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Sono
2.
Front Endocrinol (Lausanne) ; 12: 606175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113315

RESUMO

The tissue microenvironment in the mouse pancreas has been shown to promote very different polarizations of resident macrophages with islet-resident macrophages displaying an inflammatory "M1" profile and macrophages in the exocrine tissue mostly displaying an alternatively activated "M2" profile. The impact of this polarization on tissue homeostasis and diabetes development is unclear. In this study, the ability of pancreas-resident macrophages to phagocyte bacterial and endogenous debris was investigated. Mouse endocrine and exocrine tissues were separated, and tissue-resident macrophages were isolated by magnetic immunolabeling. Isolated macrophages were subjected to flow cytometry for polarization markers and qPCR for phagocytosis-related genes. Functional in vitro investigations included phagocytosis and efferocytosis assays using pH-sensitive fluorescent bacterial particles and dead fluorescent neutrophils, respectively. Intravital confocal imaging of in situ phagocytosis and efferocytosis in the pancreas was used to confirm findings in vivo. Gene expression analysis revealed no significant overall difference in expression of most phagocytosis-related genes in islet-resident vs. exocrine-resident macrophages included in the analysis. In this study, pancreas-resident macrophages were shown to differ in their ability to phagocyte bacterial and endogenous debris depending on their microenvironment. This difference in abilities may be one of the factors polarizing islet-resident macrophages to an inflammatory state since phagocytosis has been found to imprint macrophage heterogeneity. It remains unclear if this difference has any implications in the development of islet dysfunction or autoimmunity.


Assuntos
Macrófagos/fisiologia , Pâncreas/citologia , Fagocitose/fisiologia , Animais , Apoptose/fisiologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa