Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Anal Biochem ; 687: 115446, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38147946

RESUMO

Binding interactions often involve heterogeneous samples displaying a distribution of binding sites that vary in affinity and binding enthalpy. Examples include biological samples like proteins and chemically produced samples like modified cyclodextrins. Experimental studies often ignore sample heterogeneity and treat the system as an interaction of two homogeneous species, i.e. a chemically well-defined ligand binding to one type of site. The present study explores, by simulations and experiments, the impact of heterogeneity in isothermal titration calorimetry (ITC) setups where one of the binding components is heterogeneous. It is found that the standard single-site model, based on the assumption of two homogeneous binding components, provides excellent fits to simulated ITC data when the binding free energy is normally distributed and all sites have similar binding enthalpies. In such cases, heterogeneity can easily go undetected but leads to underestimated binding constants. Heterogeneity in the binding enthalpy is a bigger problem and may result in enthalpograms of increased complexity that are likely to be misinterpreted as two-site binding or other complex binding models. Finally, it is shown that heterogeneity can account for previously observed experimental anomalies. All simulations are accessible in Google Colab for readers to experiment with the simulation parameters.


Assuntos
Proteínas , Ligantes , Proteínas/química , Termodinâmica , Entropia , Calorimetria , Ligação Proteica
2.
Chembiochem ; 24(3): e202200516, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399069

RESUMO

Bioprocessing of polyester waste has emerged as a promising tool in the quest for a cyclic plastic economy. One key step is the enzymatic breakdown of the polymer, and this entails a complicated pathway with substrates, intermediates, and products of variable size and solubility. We have elucidated this pathway for poly(ethylene terephthalate) (PET) and four enzymes. Specifically, we combined different kinetic measurements and a novel stochastic model and found that the ability to hydrolyze internal bonds in the polymer (endo-lytic activity) was a key parameter for overall enzyme performance. Endo-lytic activity promoted the release of soluble PET fragments with two or three aromatic rings, which, in turn, were broken down with remarkable efficiency (kcat /KM values of about 105  M-1 s-1 ) in the aqueous bulk. This meant that approximatly 70 % of the final, monoaromatic products were formed via soluble di- or tri-aromatic intermediates.


Assuntos
Hidrolases , Ácidos Ftálicos , Hidrolases/metabolismo , Polietilenotereftalatos/química , Ácidos Ftálicos/metabolismo , Etilenos
3.
Soft Matter ; 19(8): 1549-1559, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36748314

RESUMO

The use of biomolecules in food matrices and encapsulation systems is, as in other areas, moving towards greener solutions and a center piece here is the complex coacervation between natural anionic polysaccharides and proteins. Both alginate and ß-lactoglobulin (ß-Lg) are used in different sectors and have been shown to coacervate at pH < 5.2. Albeit with increased interest, complex coacervation has almost exclusively been studied from a macromolecular perspective, and described as an interaction based on charge-charge attraction. Here, we show that through changes in pH and temperature, alginate ß-Lg complex coacervation can be tuned to purpose. By detailed biophysical and chemical characterization of coacervation and coacervate particles, insights into the molecular interaction and effect of external factors are obtained. We find that carboxylate resonance stabilization causes a release of protons at pH < pKa,alginate and an uptake of protons at pH > pKa,alginate upon coacervation. Proton release and uptake were quantified at pH 2.65 and 4.00 by isothermal titration calorimetry to be 4 and 2 protons per ß-Lg molecule, respectively. By increasing the temperature to 65 °C, we discovered a secondary ß-Lg concentration dependent coacervation step, where the formed particles change into large assemblies driven by entropy. These findings bring new insights to complex coacervation and its applicability in microencapsulation and drug delivery.


Assuntos
Lactoglobulinas , Prótons , Lactoglobulinas/química , Temperatura , Alginatos/química , Concentração de Íons de Hidrogênio
4.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175208

RESUMO

Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.


Assuntos
Amido , alfa-Amilases , alfa-Amilases/metabolismo , Hidrólise , Amido/química , Metabolismo dos Carboidratos , Catálise
5.
J Biol Chem ; 296: 100504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675751

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are known to act synergistically with glycoside hydrolases in industrial cellulolytic cocktails. However, a few studies have reported severe impeding effects of C1-oxidizing LPMOs on the activity of reducing-end cellobiohydrolases. The mechanism for this effect remains unknown, but it may have important implications as reducing-end cellobiohydrolases make up a significant part of such cocktails. To elucidate whether the impeding effect is general for different reducing-end cellobiohydrolases and study the underlying mechanism, we conducted a comparative biochemical investigation of the cooperation between a C1-oxidizing LPMO from Thielavia terrestris and three reducing-end cellobiohydrolases; Trichoderma reesei (TrCel7A), T. terrestris (TtCel7A), and Myceliophthora heterothallica (MhCel7A). The enzymes were heterologously expressed in the same organism and thoroughly characterized biochemically. The data showed distinct differences in synergistic effects between the LPMO and the cellobiohydrolases; TrCel7A was severely impeded, TtCel7A was moderately impeded, while MhCel7A was slightly boosted by the LPMO. We investigated effects of C1-oxidations on cellulose chains on the activity of the cellobiohydrolases and found reduced activity against oxidized cellulose in steady-state and pre-steady-state experiments. The oxidations led to reduced maximal velocity of the cellobiohydrolases and reduced rates of substrate complexation. The extent of these effects differed for the cellobiohydrolases and scaled with the extent of the impeding effect observed in the synergy experiments. Based on these results, we suggest that C1-oxidized chain ends are poor attack sites for reducing-end cellobiohydrolases. The severity of the impeding effects varied considerably among the cellobiohydrolases, which may be relevant to consider for optimization of industrial cocktails.


Assuntos
Celulose 1,4-beta-Celobiosidase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Hidrólise , Hypocreales/enzimologia , Oxirredução , Polissacarídeos/química , Sordariales/enzimologia
6.
Glycobiology ; 32(4): 304-313, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34939126

RESUMO

Glycoengineering ultimately allows control over glycosylation patterns to generate new glycoprotein variants with desired properties. A common challenge is glycan heterogeneity, which may affect protein function and limit the use of key techniques such as mass spectrometry. Moreover, heterologous protein expression can introduce nonnative glycan chains that may not fulfill the requirement for therapeutic proteins. One strategy to address these challenges is partial trimming or complete removal of glycan chains, which can be obtained through selective application of exoglycosidases. Here, we demonstrate an enzymatic O-deglycosylation toolbox of a GH92 α-1,2-mannosidase from Neobacillus novalis, a GH2 ß-galactofuranosidase from Amesia atrobrunnea and the jack bean α-mannosidase. The extent of enzymatic O-deglycosylation was mapped against a full glycosyl linkage analysis of the O-glycosylated linker of cellobiohydrolase I from Trichoderma reesei (TrCel7A). Furthermore, the influence of deglycosylation on TrCel7A functionality was evaluated by kinetic characterization of native and O-deglycosylated forms of TrCel7A. This study expands structural knowledge on fungal O-glycosylation and presents a ready-to-use enzymatic approach for controlled O-glycan engineering in glycoproteins expressed in filamentous fungi.


Assuntos
Celulose 1,4-beta-Celobiosidase , Manose , Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/metabolismo , Glicosilação , Manose/metabolismo , Manosidases/genética , Manosidases/metabolismo , alfa-Manosidase/metabolismo
7.
Biotechnol Bioeng ; 119(2): 470-481, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34755331

RESUMO

Cutinases can play a significant role in a biotechnology-based circular economy. However, relatively little is known about the structure-function relationship of these enzymes, knowledge that is vital to advance optimized, engineered enzyme candidates. Here, two almost identical cutinases from Thermobifida cellulosilytica DSM44535 (Thc_Cut1 and Thc_Cut2) with only 18 amino acids difference were used for a rigorous biochemical characterization of their ability to hydrolyze poly(ethylene terephthalate) (PET), PET-model substrates, and cutin-model substrates. Kinetic parameters were compared with detailed in silico docking studies of enzyme-ligand interactions. The two enzymes interacted with, and hydrolyzed PET differently, with Thc_Cut1 generating smaller PET-degradation products. Thc_Cut1 also showed higher catalytic efficiency on long-chain aliphatic substrates, an effect likely caused by small changes in the binding architecture. Thc_Cut2, in contrast, showed improved binding and catalytic efficiency when approaching the glass transition temperature of PET, an effect likely caused by longer amino acid residues in one area at the enzyme's surface. Finally, the position of the single residue Q93 close to the active site, rotated out in Thc_Cut2, influenced the ligand position of a trimeric PET-model substrate. In conclusion, we illustrate that even minor sequence differences in cutinases can affect their substrate binding, substrate specificity, and catalytic efficiency drastically.


Assuntos
Proteínas de Bactérias , Hidrolases de Éster Carboxílico , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Cinética , Simulação de Acoplamento Molecular , Polietilenotereftalatos/metabolismo , Especificidade por Substrato , Thermobifida/enzimologia
8.
J Biol Chem ; 295(6): 1454-1463, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31848226

RESUMO

Cellobiohydrolases effectively degrade cellulose and are of biotechnological interest because they can convert lignocellulosic biomass to fermentable sugars. Here, we implemented a fluorescence-based method for real-time measurements of complexation and decomplexation of the processive cellulase Cel7A and its insoluble substrate, cellulose. The method enabled detailed kinetic and thermodynamic analyses of ligand binding in a heterogeneous system. We studied WT Cel7A and several variants in which one or two of four highly conserved Trp residues in the binding tunnel had been replaced with Ala. WT Cel7A had on/off-rate constants of 1 × 105 m-1 s-1 and 5 × 10-3 s-1, respectively, reflecting the slow dynamics of a solid, polymeric ligand. Especially the off-rate constant was many orders of magnitude lower than typical values for small, soluble ligands. Binding rate and strength both were typically lower for the Trp variants, but effects of the substitutions were moderate and sometimes negligible. Hence, we propose that lowering the activation barrier for complexation is not a major driving force for the high conservation of the Trp residues. Using so-called Φ-factor analysis, we analyzed the kinetic and thermodynamic results for the variants. The results of this analysis suggested a transition state for complexation and decomplexation in which the reducing end of the ligand is close to the tunnel entrance (near Trp-40), whereas the rest of the binding tunnel is empty. We propose that this structure defines the highest free-energy barrier of the overall catalytic cycle and hence governs the turnover rate of this industrially important enzyme.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Trichoderma/metabolismo , Triptofano/metabolismo , Domínio Catalítico , Celulase/química , Ativação Enzimática , Proteínas Fúngicas/química , Cinética , Modelos Moleculares , Ligação Proteica , Especificidade por Substrato , Termodinâmica , Trichoderma/química , Triptofano/química
9.
Anal Chem ; 93(37): 12698-12706, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34498849

RESUMO

Isothermal titration calorimetry (ITC) is a widely used method to determine binding affinities and thermodynamics in ligand-receptor interactions, but it also has the capability of providing detailed information on much more complex events. However, the lack of available methods to analyze ITC data is limiting the use of the technique in such multifaceted cases. Here, we present the software ANISPROU. Through a semi-empirical approach that allows for extraction of quantitative information from complex ITC data, ANISPROU solves an inverse problem where three parameters describing a set of predefined functions must be found. In analogy to strategies adopted in other scientific fields, such as geophysics, imaging, and many others, it employs an optimization algorithm which minimizes the difference between calculated and experimental data. In contrast to the existing methods, ANISPROU provides automated and objective analysis of ITC data on sodium dodecyl sulfate (SDS)-induced protein unfolding, and in addition, more information can be extracted from the data. Here, data series on SDS-mediated protein unfolding is analyzed, and binding isotherms and thermodynamic information on the unfolding events are extracted. The obtained binding isotherms as well as the enthalpy of different events are similar to those obtained using the existing manual methods, but our methodology ensures a more robust result, as the entire data set is used instead of single data points. We foresee that ANISPROU will be useful in other cases with complex enthalpograms, for example, in cases with coupled interactions in biomolecular, polymeric, and amphiphilic systems including cases where both structural changes and interactions occur simultaneously.


Assuntos
Tensoativos , Calorimetria , Ligantes , Ligação Proteica , Dodecilsulfato de Sódio , Termodinâmica
10.
Chembiochem ; 22(9): 1627-1637, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33351214

RESUMO

The potential of bioprocessing in a circular plastic economy has strongly stimulated research into the enzymatic degradation of different synthetic polymers. Particular interest has been devoted to the commonly used polyester, poly(ethylene terephthalate) (PET), and a number of PET hydrolases have been described. However, a kinetic framework for comparisons of PET hydrolases (or other plastic-degrading enzymes) acting on the insoluble substrate has not been established. Herein, we propose such a framework, which we have tested against kinetic measurements for four PET hydrolases. The analysis provided values of kcat and KM , as well as an apparent specificity constant in the conventional units of M-1 s-1 . These parameters, together with experimental values for the number of enzyme attack sites on the PET surface, enabled comparative analyses. A variant of the PET hydrolase from Ideonella sakaiensis was the most efficient enzyme at ambient conditions; it relied on a high kcat rather than a low KM . Moreover, both soluble and insoluble PET fragments were consistently hydrolyzed much faster than intact PET. This suggests that interactions between polymer strands slow down PET degradation, whereas the chemical steps of catalysis and the low accessibility associated with solid substrate were less important for the overall rate. Finally, the investigated enzymes showed a remarkable substrate affinity, and reached half the saturation rate on PET when the concentration of attack sites in the suspension was only about 50 nM. We propose that this is linked to nonspecific adsorption, which promotes the nearness of enzyme and attack sites.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Polietilenotereftalatos/metabolismo , Biocatálise , Burkholderiales/metabolismo , Cinética , Polietilenotereftalatos/química , Especificidade por Substrato
11.
Biomacromolecules ; 22(2): 649-660, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417429

RESUMO

Alginates, serving as hydrocolloids in the food and pharma industries, form particles at pH < 4.5 with positively charged proteins, such as ß-lactoglobulin (ß-Lg). Alginates are linear anionic polysaccharides composed of 1,4-linked ß-d-mannuronate (M) and α-l-guluronate (G) residues. The impact of M and G contents and pH is investigated to correlate with the formation and size of ß-Lg alginate complexes under relevant ionic strength. It is concluded, using three alginates of M/G ratios 0.6, 1.1, and 1.8 and similar molecular mass, that ß-Lg binding capacity is higher at pH 4.0 than at pH 2.65 and for high M content. By contrast, the largest particles are obtained at pH 2.65 and with high G content. At pH 4.0 and 2.65, the stoichiometry was 28-48 and 3-10 ß-Lg molecules bound per alginate, respectively, increasing with higher M content. The findings will contribute to the design of formation of the desired alginate-protein particles in the acidic pH range.


Assuntos
Alginatos , Ácido Glucurônico , Ácidos Hexurônicos , Concentração de Íons de Hidrogênio , Ligação Proteica
12.
Microb Cell Fact ; 20(1): 93, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933097

RESUMO

Poly(ethylene terephthalate) (PET) is the world's most abundant polyester plastic, and its ongoing accumulation in nature is causing a global environmental problem. Currently, the main recycling processes utilize thermomechanical or chemical means, resulting in the deterioration of the mechanical properties of PET. Consequently, polluting de novo synthesis remains preferred, creating the need for more efficient and bio-sustainable ways to hydrolyze the polymer. Recently, a PETase enzyme from the bacterium Ideonella sakaiensis was shown to facilitate PET biodegradation, albeit at slow rate. Engineering of more efficient PETases is required for industrial relevance, but progress is currently hampered by the dependency on intracellular expression in Escherichia coli. To create a more efficient screening platform in E. coli, we explore different surface display anchors for fast and easy assaying of PETase activity. We show that PETases can be functionally displayed on the bacterial cell surface, enabling screening of enzyme activity on PET microparticles - both while anchored to the cell and following solubilization of the enzymes.


Assuntos
Biodegradação Ambiental , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Polietilenotereftalatos/metabolismo , Hidrólise , Propriedades de Superfície
13.
Phys Chem Chem Phys ; 23(14): 8598-8606, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876021

RESUMO

The thermodynamic and structural behaviors of lamellar dimyristoylphosphatidylcholine-alkanol (abbreviation DMPC-CnOH, n = 8-18 is the even number of carbons in the alkyl chain) systems were studied by using DSC and SAXD/WAXD methods at a 0-0.8 CnOH : DMPC molar ratio range. Up to n≤ 10 a significant biphasic effect depending on the main transition temperature tm on the CnOH concentration was observed. Two breakpoints were revealed: turning point (TP), corresponding to the minimum, and threshold concentration (cT), corresponding to the end of the biphasic tendency. These breakpoints were also observed in the alkanol concentration dependent change in the enthalpy of the main transition ΔHm. In the case of CnOHs with n > 10 we propose a marked shift of TP and cT to very low concentrations; consequently, only increase of tm is observed. A partial phase diagram was constructed for a pseudo-binary DMPC-C12OH system. We suggest a fluid-fluid immiscibility of the DMPC-C12OH system above cT with a consequent formation of domains with different C12OH contents. At a constant CnOH concentration, the effects of CnOHs on ΔHm and bilayer repeat distance were found to depend predominantly on the mismatch between CnOH and lipid chain lengths. Observed effects are suggested to be underlined by a counterbalancing effect of interchain van der Waals interactions and headgroup repulsion.

14.
Phys Chem Chem Phys ; 23(10): 5760-5772, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33481971

RESUMO

Inhomogeneous distribution of constituent molecules in a mixed solvent has been known to give remarkable effects on the solute, e.g., conformational changes of biomolecules in an alcohol-water mixture. We investigated the general effects of 2,2,2-trifluoroethanol (TFE) on proteins/peptides in a mixture of water and TFE using melittin as a model protein. Fluctuations and Kirkwood-Buff integrals (KBIs) in the TFE-H2O mixture, quantitative descriptions of inhomogeneity, were determined by small-angle X-ray scattering investigation and compared with those in the aqueous solutions of other alcohols. The concentration fluctuation for the mixtures ranks as methanol < ethanol ≪ TFE < tert-butanol < 1-propanol, indicating that the inhomogeneity of molecular distribution in the TFE-H2O mixture is unexpectedly comparable to those in the series of mono-ols. On the basis of the concentration dependence of KBIs between the TFE molecules, it was found that a strong attraction between the TFE molecules is not necessarily important to induce helix conformation, which is inconsistent with the previously proposed mechanism. To address this issue, by combining the KBIs and the helix contents reported by the experimental spectroscopic studies, we quantitatively evaluated the change in the preferential binding parameter of TFE to melittin attributed to the coil-helix transition. As a result, we found two different regimes on TFE-induced helix formation. In the dilute concentration region of TFE below ∼2 M, where the TFE molecules are not aggregated among themselves, the excess preferential binding of TFE to the helix occurs due to the direct interaction between them, namely independent of the solvent fluctuation. In the higher concentration region above ∼2 M, in addition to the former effect, the excess preferential binding is significantly enhanced by the solvent fluctuation. This scheme should be held as general cosolvent effects of TFE on proteins/peptides.


Assuntos
Álcoois/química , Meliteno/química , Peptídeos/química , Solventes/química , Trifluoretanol/química , Sequência de Aminoácidos , Conformação Molecular , Transição de Fase , Termodinâmica , Água
15.
Biochem J ; 477(1): 99-110, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31816027

RESUMO

Cellobiohydrolase Cel7A is an industrial important enzyme that breaks down cellulose by a complex processive mechanism. The enzyme threads the reducing end of a cellulose strand into its tunnel-shaped catalytic domain and progresses along the strand while sequentially releasing the disaccharide cellobiose. While some molecular details of this intricate process have emerged, general structure-function relationships for Cel7A remain poorly elucidated. One interesting aspect is the occurrence of particularly strong ligand interactions in the product binding site. In this work, we analyze these interactions in Cel7A from Trichoderma reesei with special emphasis on the Arg251 and Arg394 residues. We made extensive biochemical characterization of enzymes that were mutated in these two positions and showed that the arginine residues contributed strongly to product binding. Specifically, ∼50% of the total standard free energy of product binding could be ascribed to four hydrogen bonds to Arg251 and Arg394, which had previously been identified in crystal structures. Mutation of either Arg251 or Arg394 lowered production inhibition of Cel7A, but at the same time altered the enzyme product profile and resulted in ∼50% reduction in both processivity and hydrolytic activity. The position of the two arginine residues closely matches the two-fold screw axis symmetry of the substrate, and this energetically favors the productive enzyme-substrate complex. Our results indicate that the strong and specific ligand interactions of Arg251 and Arg394 provide a simple proofreading system that controls the step length during consecutive hydrolysis and minimizes dead time associated with transient, non-productive complexes.


Assuntos
Celulose 1,4-beta-Celobiosidase/química , Proteínas Fúngicas/química , Trichoderma/enzimologia , Sítios de Ligação , Domínio Catalítico , Hidrólise , Cinética
16.
Biochem J ; 477(10): 1971-1982, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32391552

RESUMO

The kinetic theory of enzymes that modify insoluble substrates is still underdeveloped, despite the prevalence of this type of reaction both in vivo and industrial applications. Here, we present a steady-state kinetic approach to investigate inhibition occurring at the solid-liquid interface. We propose to conduct experiments under enzyme excess (E0 ≫ S0), i.e. the opposite limit compared with the conventional Michaelis-Menten framework. This inverse condition is practical for insoluble substrates and elucidates how the inhibitor reduces enzyme activity through binding to the substrate. We claim that this type of inhibition is common for interfacial enzyme reactions because substrate accessibility is low, and we show that it can be analyzed by experiments and rate equations that are analogous to the conventional approach, except that the roles of enzyme and substrate have been swapped. To illustrate the approach, we investigated the major cellulases from Trichoderma reesei (Cel6A and Cel7A) acting on insoluble cellulose. As model inhibitors, we used catalytically inactive variants of Cel6A and Cel7A. We made so-called inverse Michaelis-Menten curves at different concentrations of inhibitors and found that a new rate equation accounted well for the data. In most cases, we found a mixed type of surface-site inhibition mechanism, and this probably reflected that the inhibitor both competed with the enzyme for the productive binding-sites (competitive inhibition) and hampered the processive movement on the surface (uncompetitive inhibition). These results give new insights into the complex interplay of Cel7A and Cel6A on cellulose and the approach may be applicable to other heterogeneous enzyme reactions.


Assuntos
Celulases/metabolismo , Inibidores Enzimáticos/metabolismo , Enzimas/metabolismo , Trichoderma/enzimologia , Sítios de Ligação , Celulose/metabolismo , Hidrólise , Cinética
17.
J Biol Chem ; 294(6): 1807-1815, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30538133

RESUMO

Glycoside hydrolase family 7 (GH7) cellulases are some of the most efficient degraders of cellulose, making them particularly relevant for industries seeking to produce renewable fuels from lignocellulosic biomass. The secretome of the cellulolytic model fungus Trichoderma reesei contains two GH7s, termed TrCel7A and TrCel7B. Despite having high structural and sequence similarities, the two enzymes are functionally quite different. TrCel7A is an exolytic, processive cellobiohydrolase (CBH), with high activity on crystalline cellulose, whereas TrCel7B is an endoglucanase (EG) with a preference for more amorphous cellulose. At the structural level, these functional differences are usually ascribed to the flexible loops that cover the substrate-binding areas. TrCel7A has an extensive tunnel created by eight peripheral loops, and the absence of four of these loops in TrCel7B makes its catalytic domain a more open cleft. To investigate the structure-function relationships of these loops, here we produced and kinetically characterized several variants in which four loops unique to TrCel7A were individually deleted to resemble the arrangement in the TrCel7B structure. Analysis of a range of kinetic parameters consistently indicated that the B2 loop, covering the substrate-binding subsites -3 and -4 in TrCel7A, was a key determinant for the difference in CBH- or EG-like behavior between TrCel7A and TrCel7B. Conversely, the B3 and B4 loops, located closer to the catalytic site in TrCel7A, were less important for these activities. We surmise that these results could be useful both in further mechanistic investigations and for guiding engineering efforts of this industrially important enzyme family.


Assuntos
Sequência de Aminoácidos , Celulose 1,4-beta-Celobiosidase , Proteínas Fúngicas , Deleção de Sequência , Trichoderma , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Estrutura Secundária de Proteína , Trichoderma/enzimologia , Trichoderma/genética
18.
Anal Biochem ; 607: 113873, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32771375

RESUMO

Enzymatic breakdown of plastic has emerged as a promising green technology, and its implementation will require assays that are accurate, reliable and convenient. Here, we assess two principles to monitor the hydrolysis of the common polyester, polyethylene terephthalate (PET). Hydrolysis of PET gives rise to heterogeneous products of different sizes and solubility, and as a result, specific experimental methods detect different activity levels. To avoid errors and to get a thorough picture of enzyme reactions, it is beneficial to combine several detection techniques. The two methods described herein are quantitative and complementary, and detect respectively the amount of soluble aromatic products and the formation of the constitutive aromatic monomers. A combined quantification approach identifies pitfalls in the characterization of these enzymes and provides mechanistic insight, but for screening and/or comparative studies of PET hydrolases we recommend a plate reader-based assay with suspended PET powder. This assay is rapid and simple, but still provides a good measure of the initial rates, which may be used in comparative biochemical analyses of these enzymes.


Assuntos
Hidrolases/metabolismo , Polietilenotereftalatos/química , Técnicas Biossensoriais , Hidrolases de Éster Carboxílico/metabolismo , Catálise , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Hidrocarbonetos Aromáticos/química , Hidrólise , Solubilidade , Espectrofotometria , Suspensões/química , Água
19.
Biotechnol Bioeng ; 117(2): 382-391, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31631319

RESUMO

Understanding the pH effect of cellulolytic enzymes is of great technological importance. In this study, we have examined the influence of pH on activity and stability for central cellulases (Cel7A, Cel7B, Cel6A from Trichoderma reesei, and Cel7A from Rasamsonia emersonii). We systematically changed pH from 2 to 7, temperature from 20°C to 70°C, and used both soluble (4-nitrophenyl ß- d-lactopyranoside [pNPL]) and insoluble (Avicel) substrates at different concentrations. Collective interpretation of these data provided new insights. An unusual tolerance to acidic conditions was observed for both investigated Cel7As, but only on real insoluble cellulose. In contrast, pH profiles on pNPL were bell-shaped with a strong loss of activity both above and below the optimal pH for all four enzymes. On a practical level, these observations call for the caution of the common practice of using soluble substrates for the general characterization of pH effects on cellulase activity. Kinetic modeling of the experimental data suggested that the nucleophile of Cel7A experiences a strong downward shift in pKa upon complexation with an insoluble substrate. This shift was less pronounced for Cel7B, Cel6A, and for Cel7A acting on the soluble substrate, and we hypothesize that these differences are related to the accessibility of water to the binding region of the Michaelis complex.


Assuntos
Celulases/química , Celulases/metabolismo , Celulose/química , Celulose/metabolismo , Sítios de Ligação , Celulases/genética , Estabilidade Enzimática , Eurotiales/enzimologia , Eurotiales/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Hypocreales/enzimologia , Hypocreales/genética , Cinética , Modelos Moleculares , Ligação Proteica , Temperatura
20.
Biochem J ; 476(15): 2157-2172, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31311837

RESUMO

Cellobiohydrolases (CBHs) from glycoside hydrolase family 6 (GH6) make up an important part of the secretome in many cellulolytic fungi. They are also of technical interest, particularly because they are part of the enzyme cocktails that are used for the industrial breakdown of lignocellulosic biomass. Nevertheless, functional studies of GH6 CBHs are scarce and focused on a few model enzymes. To elucidate functional breadth among GH6 CBHs, we conducted a comparative biochemical study of seven GH6 CBHs originating from fungi living in different habitats, in addition to one enzyme variant. The enzyme sequences were investigated by phylogenetic analyses to ensure that they were not closely related phylogenetically. The selected enzymes were all heterologously expressed in Aspergillus oryzae, purified and thoroughly characterized biochemically. This approach allowed direct comparisons of functional data, and the results revealed substantial variability. For example, the adsorption capacity on cellulose spanned two orders of magnitude and kinetic parameters, derived from two independent steady-state methods also varied significantly. While the different functional parameters covered wide ranges, they were not independent since they changed in parallel between two poles. One pole was characterized by strong substrate interactions, high adsorption capacity and low turnover number while the other showed weak substrate interactions, poor adsorption and high turnover. The investigated enzymes essentially defined a continuum between these two opposites, and this scaling of functional parameters raises interesting questions regarding functional plasticity and evolution of GH6 CBHs.


Assuntos
Celulose 1,4-beta-Celobiosidase , Evolução Molecular , Proteínas Fúngicas , Fungos , Filogenia , Celulose 1,4-beta-Celobiosidase/química , Celulose 1,4-beta-Celobiosidase/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fungos/enzimologia , Fungos/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa