Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Alzheimers Dement ; 17(9): 1452-1464, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33792144

RESUMO

INTRODUCTION: This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis. METHODS: Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively. RESULTS: Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis. DISCUSSION: Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Proteínas Sanguíneas , Proteômica , Proteínas tau/sangue , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Apolipoproteína E4/sangue , Apolipoproteína E4/genética , Disfunção Cognitiva/sangue , Disfunção Cognitiva/patologia , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
Alzheimers Dement ; 15(5): 644-654, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30853464

RESUMO

INTRODUCTION: We investigated relations between amyloid-ß (Aß) status, apolipoprotein E (APOE) ε4, and cognition, with cerebrospinal fluid markers of neurogranin (Ng), neurofilament light (NFL), YKL-40, and total tau (T-tau). METHODS: We included 770 individuals with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD)-type dementia from the EMIF-AD Multimodal Biomarker Discovery study. We tested the association of Ng, NFL, YKL-40, and T-tau with Aß status (Aß- vs. Aß+), clinical diagnosis APOE ε4 carriership, baseline cognition, and change in cognition. RESULTS: Ng and T-tau distinguished between Aß+ from Aß- individuals in each clinical group, whereas NFL and YKL-40 were associated with Aß+ in nondemented individuals only. APOE ε4 carriership did not influence NFL, Ng, and YKL-40 in Aß+ individuals. NFL was the best predictor of cognitive decline in Aß+ individuals across the cognitive spectrum. DISCUSSION: Axonal degeneration, synaptic dysfunction, astroglial activation, and altered tau metabolism are involved already in preclinical AD. NFL may be a useful prognostic marker.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos
3.
Alzheimers Dement ; 15(11): 1478-1488, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31495601

RESUMO

INTRODUCTION: Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins. METHODS: 4001 plasma proteins were measured in two groups of participants (discovery group = 516, replication group = 365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid. RESULTS: A panel of proteins (n = 44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve = 0.78) and the replication group (area under the curve = 0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization. DISCUSSION: The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition.


Assuntos
Doença de Alzheimer , Amiloide/metabolismo , Biomarcadores/sangue , Encéfalo/metabolismo , Proteômica , Fatores Etários , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
Alzheimers Dement ; 15(6): 776-787, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31047856

RESUMO

INTRODUCTION: Plasma biomarkers for Alzheimer's disease (AD) diagnosis/stratification are a "Holy Grail" of AD research and intensively sought; however, there are no well-established plasma markers. METHODS: A hypothesis-led plasma biomarker search was conducted in the context of international multicenter studies. The discovery phase measured 53 inflammatory proteins in elderly control (CTL; 259), mild cognitive impairment (MCI; 199), and AD (262) subjects from AddNeuroMed. RESULTS: Ten analytes showed significant intergroup differences. Logistic regression identified five (FB, FH, sCR1, MCP-1, eotaxin-1) that, age/APOε4 adjusted, optimally differentiated AD and CTL (AUC: 0.79), and three (sCR1, MCP-1, eotaxin-1) that optimally differentiated AD and MCI (AUC: 0.74). These models replicated in an independent cohort (EMIF; AUC 0.81 and 0.67). Two analytes (FB, FH) plus age predicted MCI progression to AD (AUC: 0.71). DISCUSSION: Plasma markers of inflammation and complement dysregulation support diagnosis and outcome prediction in AD and MCI. Further replication is needed before clinical translation.


Assuntos
Doença de Alzheimer , Biomarcadores/sangue , Disfunção Cognitiva , Inflamação , Idoso , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/sangue , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Fator B do Complemento , Fator H do Complemento , Humanos , Internacionalidade , Prognóstico
5.
Alzheimers Dement ; 15(6): 817-827, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31078433

RESUMO

INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers. METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis. RESULTS: Eight metabolites were associated with amyloid ß and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory. DISCUSSION: PFAMs have been found increased and associated with amyloid ß burden in CSF and clinical measures.


Assuntos
Peptídeos beta-Amiloides , Amiloidose/sangue , Biomarcadores , Hipocampo , Memória/fisiologia , Metabolômica , Idoso , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Amiloidose/líquido cefalorraquidiano , Amiloidose/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Feminino , Hipocampo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidiano
6.
J Alzheimers Dis ; 79(1): 423-431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33285634

RESUMO

BACKGROUND: Accessible datasets are of fundamental importance to the advancement of Alzheimer's disease (AD) research. The AddNeuroMed consortium conducted a longitudinal observational cohort study with the aim to discover AD biomarkers. During this study, a broad selection of data modalities was measured including clinical assessments, magnetic resonance imaging, genotyping, transcriptomic profiling, and blood plasma proteomics. Some of the collected data were shared with third-party researchers. However, this data was incomplete, erroneous, and lacking in interoperability. OBJECTIVE: To provide the research community with an accessible, multimodal, patient-level AD cohort dataset. METHODS: We systematically addressed several limitations of the originally shared resources and provided additional unreleased data to enhance the dataset. RESULTS: In this work, we publish and describe ANMerge, a new version of the AddNeuroMed dataset. ANMerge includes multimodal data from 1,702 study participants and is accessible to the research community via a centralized portal. CONCLUSION: ANMerge is an information rich patient-level data resource that can serve as a discovery and validation cohort for data-driven AD research, such as, for example, machine learning and artificial intelligence approaches.


Assuntos
Doença de Alzheimer/fisiopatologia , Conjuntos de Dados como Assunto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteômica
7.
Biomedicines ; 9(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34829839

RESUMO

BACKGROUND: physiological differences between males and females could contribute to the development of Alzheimer's Disease (AD). Here, we examined metabolic pathways that may lead to precision medicine initiatives. METHODS: We explored whether sex modifies the association of 540 plasma metabolites with AD endophenotypes including diagnosis, cerebrospinal fluid (CSF) biomarkers, brain imaging, and cognition using regression analyses for 695 participants (377 females), followed by sex-specific pathway overrepresentation analyses, APOE ε4 stratification and assessment of metabolites' discriminatory performance in AD. RESULTS: In females with AD, vanillylmandelate (tyrosine pathway) was increased and tryptophan betaine (tryptophan pathway) was decreased. The inclusion of these two metabolites (area under curve (AUC) = 0.83, standard error (SE) = 0.029) to a baseline model (covariates + CSF biomarkers, AUC = 0.92, SE = 0.019) resulted in a significantly higher AUC of 0.96 (SE = 0.012). Kynurenate was decreased in males with AD (AUC = 0.679, SE = 0.046). CONCLUSIONS: metabolic sex-specific differences were reported, covering neurotransmission and inflammation pathways with AD endophenotypes. Two metabolites, in pathways related to dopamine and serotonin, were associated to females, paving the way to personalised treatment.

8.
EPMA J ; 11(3): 367-376, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32843907

RESUMO

Artificial intelligence (AI) approaches pose a great opportunity for individualized, pre-symptomatic disease diagnosis which plays a key role in the context of personalized, predictive, and finally preventive medicine (PPPM). However, to translate PPPM into clinical practice, it is of utmost importance that AI-based models are carefully validated. The validation process comprises several steps, one of which is testing the model on patient-level data from an independent clinical cohort study. However, recruitment criteria can bias statistical analysis of cohort study data and impede model application beyond the training data. To evaluate whether and how data from independent clinical cohort studies differ from each other, this study systematically compares the datasets collected from two major dementia cohorts, namely, the Alzheimer's Disease Neuroimaging Initiative (ADNI) and AddNeuroMed. The presented comparison was conducted on individual feature level and revealed significant differences among both cohorts. Such systematic deviations can potentially hamper the generalizability of results which were based on a single cohort dataset. Despite identified differences, validation of a previously published, ADNI trained model for prediction of personalized dementia risk scores on 244 AddNeuroMed subjects was successful: External validation resulted in a high prediction performance of above 80% area under receiver operator characteristic curve up to 6 years before dementia diagnosis. Propensity score matching identified a subset of patients from AddNeuroMed, which showed significantly smaller demographic differences to ADNI. For these patients, an even higher prediction performance was achieved, which demonstrates the influence systematic differences between cohorts can have on validation results. In conclusion, this study exposes challenges in external validation of AI models on cohort study data and is one of the rare cases in the neurology field in which such external validation was performed. The presented model represents a proof of concept that reliable models for personalized predictive diagnostics are feasible, which, in turn, could lead to adequate disease prevention and hereby enable the PPPM paradigm in the dementia field.

9.
J Alzheimers Dis ; 74(1): 213-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31985466

RESUMO

We have previously investigated, discovered, and replicated plasma protein biomarkers for use to triage potential trials participants for PET or cerebrospinal fluid measures of Alzheimer's disease (AD) pathology. This study sought to undertake validation of these candidate plasma biomarkers in a large, multi-center sample collection. Targeted plasma analyses of 34 proteins with prior evidence for prediction of in vivo pathology were conducted in up to 1,000 samples from cognitively healthy elderly individuals, people with mild cognitive impairment, and in patients with AD-type dementia, selected from the EMIF-AD catalogue. Proteins were measured using Luminex xMAP, ELISA, and Meso Scale Discovery assays. Seven proteins replicated in their ability to predict in vivo amyloid pathology. These proteins form a biomarker panel that, along with age, could significantly discriminate between individuals with high and low amyloid pathology with an area under the curve of 0.74. The performance of this biomarker panel remained consistent when tested in apolipoprotein E ɛ4 non-carrier individuals only. This blood-based panel is biologically relevant, measurable using practical immunocapture arrays, and could significantly reduce the cost incurred to clinical trials through screen failure.


Assuntos
Doença de Alzheimer/sangue , Biomarcadores/sangue , Proteínas Sanguíneas/análise , Angiopatia Amiloide Cerebral/sangue , Proteômica , Idoso , Doença de Alzheimer/diagnóstico por imagem , Apolipoproteína E4/genética , Carga Corporal (Radioterapia) , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico por imagem , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Curva ROC , Proteínas tau/líquido cefalorraquidiano
10.
J Alzheimers Dis ; 77(3): 1353-1368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831200

RESUMO

BACKGROUND: Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown. OBJECTIVE: We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes. METHODS: We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677). RESULTS: We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts. CONCLUSIONS: Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Idoso , Doença de Alzheimer/genética , Biomarcadores/sangue , Feminino , Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Pessoa de Meia-Idade
11.
Alzheimers Dement (N Y) ; 5: 933-938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890857

RESUMO

INTRODUCTION: Machine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers. METHODS: This study analyzed samples from 242 cognitively normal (CN) people and 115 with AD-type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV). RESULTS: On the test data, DL produced the AUC of 0.85 (0.80-0.89), XGBoost produced 0.88 (0.86-0.89) and RF produced 0.85 (0.83-0.87). By comparison, CSF measures of amyloid, p-tau and t-tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively. DISCUSSION: This study showed that plasma metabolites have the potential to match the AUC of well-established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.

12.
J Alzheimers Dis ; 62(3): 1181-1198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29562526

RESUMO

Blood-based biomarkers represent a less invasive and potentially cheaper approach for aiding Alzheimer's disease (AD) detection compared with cerebrospinal fluid and some neuroimaging biomarkers. Acknowledging that many in the field have made great progress, here we review some of the work that our group has pursued to identify and validate blood-based proteomic biomarkers through both case control and AD pathology endophenotype-based approaches. Our focus is primarily to identify a minimally invasive and hopefully cost-effective blood-based biomarker to reduce screen failure in clinical trials where participants have prodromal or even pre-clinical disease. We summarize some of the key findings and approaches taken in these biomarker studies, while addressing the main challenges, including that of limited replication in the field, and discuss opportunities for biomarker development.


Assuntos
Doença de Alzheimer/sangue , Animais , Biomarcadores/sangue , Humanos
13.
Front Aging Neurosci ; 10: 409, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618716

RESUMO

Background: Blood biomarkers may aid in recruitment to clinical trials of Alzheimer's disease (AD) modifying therapeutics by triaging potential trials participants for amyloid positron emission tomography (PET) or cerebrospinal fluid (CSF) Aß and tau tests. Objective: To discover a plasma proteomic signature associated with CSF and PET measures of AD pathology. Methods: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) based proteomics were performed in plasma from participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD, recruited to the Amsterdam Dementia Cohort, stratified by CSF Tau/Aß42 (n = 50). Technical replication and independent validation were performed by immunoassay in plasma from SCD, MCI, and AD participants recruited to the Amsterdam Dementia Cohort with CSF measures (n = 100), MCI participants enrolled in the GE067-005 study with [18F]-Flutemetamol PET amyloid measures (n = 173), and AD, MCI and cognitively healthy participants from the EMIF 500 study with CSF Aß42 measurements (n = 494). Results: 25 discovery proteins were nominally associated with CSF Tau/Aß42 (P < 0.05) with associations of ficolin-2 (FCN2), apolipoprotein C-IV and fibrinogen ß chain confirmed by immunoassay (P < 0.05). In the GE067-005 cohort, FCN2 was nominally associated with PET amyloid (P < 0.05) replicating the association with CSF Tau/Aß42. There were nominally significant associations of complement component 3 with PET amyloid, and apolipoprotein(a), apolipoprotein A-I, ceruloplasmin, and PPY with MCI conversion to AD (all P < 0.05). In the EMIF 500 cohort FCN2 was trending toward a significant relationship with CSF Aß42 (P ≈ 0.05), while both A1AT and clusterin were nominally significantly associated with CSF Aß42 (both P < 0.05). Conclusion: Associations of plasma proteins with multiple measures of AD pathology and progression are demonstrated. To our knowledge this is the first study to report an association of FCN2 with AD pathology. Further testing of the proteins in larger independent cohorts will be important.

14.
Alzheimers Res Ther ; 9(1): 31, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28441961

RESUMO

BACKGROUND: Insulin resistance (IR) has previously been associated with an increased risk of developing Alzheimer's disease (AD), although the relationship between IR and AD is not yet clear. Here, we examined the influence of IR on AD using plasma and cerebrospinal fluid (CSF) biomarkers related to IR and AD in cognitively healthy men. We also aimed to characterise the shared protein signatures between IR and AD. METHODS: Fifty-eight cognitively healthy men, 28 IR and 30 non-IR (age and APOE ε4 matched), were drawn from the Metabolic Syndrome in Men study in Kuopio, Finland. CSF AD biomarkers (amyloid ß-peptide (Aß), total tau and tau phosphorylated at the Thr181 epitope) were examined with respect to IR. Targeted proteomics using ELISA and Luminex xMAP assays were performed to assess the influence of IR on previously identified CSF and plasma protein biomarker candidates of AD pathology. Furthermore, CSF and plasma SOMAscan was performed to discover proteins that associate with IR and CSF AD biomarkers. RESULTS: CSF AD biomarkers did not differ between IR and non-IR groups, although plasma insulin correlated with CSF Aß/tau across the whole cohort. In total, 200 CSF and 487 plasma proteins were differentially expressed between IR and non-IR subjects, and significantly enriched pathways, many of which have been previously implicated in AD, were identified. CSF and plasma proteins significantly associated with CSF AD biomarkers were also discovered, and those sensitive to both IR and AD were identified. CONCLUSIONS: These data indicate that IR is not directly related to the level of CSF AD pathology in cognitively healthy men. Proteins that associated with both AD and IR are potential markers indicative of shared pathology.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/sangue , Apolipoproteína E4/líquido cefalorraquidiano , Resistência à Insulina , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
J Alzheimers Dis ; 52(2): 561-72, 2016 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-27031486

RESUMO

Increasingly, clinical trials for Alzheimer's disease (AD) are being conducted earlier in the disease phase and with biomarker confirmation using in vivo amyloid PET imaging or CSF tau and Aß measures to quantify pathology. However, making such a pre-clinical AD diagnosis is relatively costly and the screening failure rate is likely to be high. Having a blood-based marker that would reduce such costs and accelerate clinical trials through identifying potential participants with likely pre-clinical AD would be a substantial advance. In order to seek such a candidate biomarker, discovery phase proteomic analyses using 2DGE and gel-free LC-MS/MS for high and low molecular weight analytes were conducted on longitudinal plasma samples collected over a 12-year period from non-demented older individuals who exhibited a range of 11C-PiB PET measures of amyloid load. We then sought to extend our discovery findings by investigating whether our candidate biomarkers were also associated with brain amyloid burden in disease, in an independent cohort. Seven plasma proteins, including A2M, Apo-A1, and multiple complement proteins, were identified as pre-clinical biomarkers of amyloid burden and were consistent across three time points (p <  0.05). Five of these proteins also correlated with brain amyloid measures at different stages of the disease (q <  0.1). Here we show that it is possible to detect a plasma based biomarker signature indicative of AD pathology at a stage long before the onset of clinical disease manifestation. As in previous studies, acute phase reactants and inflammatory markers dominate this signature.


Assuntos
Doença de Alzheimer/sangue , Proteínas Amiloidogênicas/análise , Benzotiazóis/análise , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Compostos de Anilina , Biomarcadores/sangue , Encéfalo/patologia , Química Encefálica , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Espectrometria de Massas em Tandem , Tiazóis , alfa-Macroglobulinas/análise
16.
Front Neurol ; 6: 236, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635716

RESUMO

The complexity of Alzheimer's disease (AD) and its long prodromal phase poses challenges for early diagnosis and yet allows for the possibility of the development of disease modifying treatments for secondary prevention. It is, therefore, of importance to develop biomarkers, in particular, in the preclinical or early phases that reflect the pathological characteristics of the disease and, moreover, could be of utility in triaging subjects for preventative therapeutic clinical trials. Much research has sought biomarkers for diagnostic purposes by comparing affected people to unaffected controls. However, given that AD pathology precedes disease onset, a pathology endophenotype design for biomarker discovery creates the opportunity for detection of much earlier markers of disease. Blood-based biomarkers potentially provide a minimally invasive option for this purpose and research in the field has adopted various "omics" approaches in order to achieve this. This review will, therefore, examine the current literature regarding blood-based proteomic biomarkers of AD and its associated pathology.

17.
Alzheimers Dement (Amst) ; 1(1): 48-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27239491

RESUMO

BACKGROUND: Measures of neocortical amyloid burden (NAB) identify individuals who are at substantially greater risk of developing Alzheimer's disease (AD). Blood-based biomarkers predicting NAB would have great utility for the enrichment of AD clinical trials, including large-scale prevention trials. METHODS: Nontargeted proteomic discovery was applied to 78 subjects from the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing with a range of NAB values. Technical and independent replications were performed by immunoassay. RESULTS: Seventeen discovery candidates were selected for technical replication. α2-Macroglobulin, fibrinogen γ-chain (FGG), and complement factor H-related protein 1 were confirmed to be associated with NAB. In an independent cohort, FGG plasma levels combined with age predicted NAB had a sensitivity of 59% and specificity of 78%. CONCLUSION: A single blood protein, FGG, combined with age, was shown to relate to NAB and therefore could have potential for enrichment of clinical trial populations.

18.
J Nucl Med ; 52(8): 1218-26, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21764801

RESUMO

UNLABELLED: Increasingly, clinical trials are being planned in patients with mild cognitive impairment (MCI) to prevent or delay the onset of dementia in Alzheimer disease (AD) by disease-modifying intervention. Inclusion of imaging techniques as biomarkers for patient selection and assessment of outcome is expected to increase trial efficacy. PET using (18)F-FDG provides objective information about the impairment of synaptic function and could, with appropriate standardization, qualify as a biomarker. METHODS: We evaluated a predefined quantitative measure (PET score) that is extracted automatically from (18)F-FDG PET scans using a sample of controls (n = 44), patients with MCI (n = 94), and patients with mild AD (n = 40) from the Alzheimer Disease Neuroimaging Initiative (ADNI). Subjects received 4 scans and clinical assessments over 2 y. RESULTS: PET scores provide much higher test-retest reliability than standard neuropsychologic test scores (Alzheimer's Disease Assessment Scale-Cognitive [ADAS-cog] and Mini-Mental State Examination) and superior signal strength for measuring progression. At the same time, they are related linearly to ADAS-cog scores, thus providing a valid measure of cognitive impairment. In addition, PET scores at study entry in MCI patients significantly predict clinical progression to dementia with a higher accuracy than Mini-Mental State Examination and ADAS-cog. CONCLUSION: (18)F-FDG PET scores are a valid imaging biomarker to monitor the progression of MCI to AD. Their superior test-retest reliability and signal strength will allow the reduction in the number of subjects needed or shortening of study duration substantially.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Transtornos Cognitivos/diagnóstico por imagem , Fluordesoxiglucose F18/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Idoso , Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Calibragem , Cognição , Transtornos Cognitivos/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Neurologia/métodos , Testes Neuropsicológicos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa