RESUMO
BACKGROUND: High cholesterol levels in pancreatic ß-cells cause oxidative stress and decrease insulin secretion. ß-cells can internalize apo (apolipoprotein) A-I, which increases insulin secretion. This study asks whether internalization of apoA-I improves ß-cell insulin secretion by reducing oxidative stress. METHODS: Ins-1E cells were cholesterol-loaded by incubation with cholesterol-methyl-ß-cyclodextrin. Insulin secretion in the presence of 2.8 or 25 mmol/L glucose was quantified by radioimmunoassay. Internalization of fluorescently labeled apoA-I by ß-cells was monitored by flow cytometry. The effects of apoA-I internalization on ß-cell gene expression were evaluated by RNA sequencing. ApoA-I-binding partners on the ß-cell surface were identified by mass spectrometry. Mitochondrial oxidative stress was quantified in ß-cells and isolated islets with MitoSOX and confocal microscopy. RESULTS: An F1-ATPase ß-subunit on the ß-cell surface was identified as the main apoA-I-binding partner. ß-cell internalization of apoA-I was time-, concentration-, temperature-, cholesterol-, and F1-ATPase ß-subunit-dependent. ß-cells with internalized apoA-I (apoA-I+ cells) had higher cholesterol and cell surface F1-ATPase ß-subunit levels than ß-cells without internalized apoA-I (apoA-I- cells). The internalized apoA-I colocalized with mitochondria and was associated with reduced oxidative stress and increased insulin secretion. The IF1 (ATPase inhibitory factor 1) attenuated apoA-I internalization and increased oxidative stress in Ins-1E ß-cells and isolated mouse islets. Differentially expressed genes in apoA-I+ and apoA-I- Ins-1E cells were related to protein synthesis, the unfolded protein response, insulin secretion, and mitochondrial function. CONCLUSIONS: These results establish that ß-cells are functionally heterogeneous, and apoA-I restores insulin secretion in ß-cells with elevated cholesterol levels by improving mitochondrial redox balance.
Assuntos
Células Secretoras de Insulina , Insulina , Camundongos , Animais , Insulina/farmacologia , Apolipoproteína A-I/metabolismo , Células Secretoras de Insulina/metabolismo , Colesterol/metabolismo , Glucose/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologiaRESUMO
A significant challenge to making targeted cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies accessible to all individuals with cystic fibrosis (CF) are many mutations in the CFTR gene that can cause CF, most of which remain uncharacterized. Here, we characterized the structural and functional defects of the rare CFTR mutation R352Q, with a potential role contributing to intrapore chloride ion permeation, in patient-derived cell models of the airway and gut. CFTR function in differentiated nasal epithelial cultures and matched intestinal organoids was assessed using an ion transport assay and forskolin-induced swelling assay, respectively. CFTR potentiators (VX-770, GLPG1837, and VX-445) and correctors (VX-809, VX-445, with or without VX-661) were tested. Data from R352Q-CFTR were compared with data of 20 participants with mutations with known impact on CFTR function. R352Q-CFTR has residual CFTR function that was restored to functional CFTR activity by CFTR potentiators but not the corrector. Molecular dynamics simulations of R352Q-CFTR were carried out, which indicated the presence of a chloride conductance defect, with little evidence supporting a gating defect. The combination approach of in vitro patient-derived cell models and in silico molecular dynamics simulations to characterize rare CFTR mutations can improve the specificity and sensitivity of modulator response predictions and aid in their translational use for CF precision medicine.
Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Aminofenóis/farmacologia , Cloretos/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutação , Organoides/metabolismoRESUMO
Co-polymers of tropomyosin and actin make up a major fraction of the actin cytoskeleton. Tropomyosin isoforms determine the function of an actin filament by selectively enhancing or inhibiting the association of other actin binding proteins, altering the stability of an actin filament and regulating myosin activity in an isoform-specific manner. Previous work has implicated specific roles for at least five different tropomyosin isoforms in stress fibres, as depletion of any of these five isoforms results in a loss of stress fibres. Despite this, most models of stress fibres continue to exclude tropomyosins. In this study, we investigate tropomyosin organisation in stress fibres by using super-resolution light microscopy and electron microscopy with genetically tagged, endogenous tropomyosin. We show that tropomyosin isoforms are organised in subdomains within the overall domain of stress fibres. The isoforms Tpm3.1 and 3.2 (hereafter Tpm3.1/3.2, encoded by TPM3) colocalise with non-muscle myosin IIa and IIb heads, and are in register, but do not overlap, with non-muscle myosin IIa and IIb tails. Furthermore, perturbation of Tpm3.1/3.2 results in decreased myosin IIa in stress fibres, which is consistent with a role for Tpm3.1 in maintaining myosin IIa localisation in stress fibres.
Assuntos
Miosina não Muscular Tipo IIA/metabolismo , Fibras de Estresse/metabolismo , Tropomiosina/metabolismo , Linhagem Celular Tumoral , Humanos , Miosina não Muscular Tipo IIA/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fibras de Estresse/genética , Tropomiosina/genéticaRESUMO
Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Espectrometria de Fluorescência/métodos , Molécula 1 de Interação Estromal/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Movimento Celular , Simulação por Computador , Difusão , Células Epiteliais , Humanos , Microscopia Intravital/instrumentação , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Sensibilidade e Especificidade , Espectrometria de Fluorescência/instrumentaçãoRESUMO
Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor-AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.
Assuntos
Azacitidina/farmacologia , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/fisiologiaRESUMO
Alzheimer's disease (AD) involves the propagation of filaments of tau protein throughout the cerebral cortex. Imaging tau filaments and oligomers in human brain at high resolution would help contribute insight into the mechanism and progression of tauopathic diseases. STED microscopy is a nano-scale imaging technique and we aimed to test the abilities of this method for resolving tau structures within human brain. Using autopsied 50µm AD brain sections, we demonstrate that STED microscopy can resolve immunolabelled tau filaments at 77nm resolution. Ribbon-like tau filaments imaged by STED appeared smooth along their axis with limited axial undulations. STED also resolved 70-80nm wide tau puncta. Of the fluorophores tested, STAR635p was optimal for STED imaging in this tissue. This was in part due to brain tissue autofluorescence within the lower wavelength ranges (488-590nm). Further, the stability and minimal photobleaching of STAR635p allowed STED z-stacks of neurons packed with tau filaments (neurofibrillary tangles) to be collated. There was no loss of x-y image resolution of individual tau filaments through the 20µm z-stack. This demonstrates that STED can contribute to nano-scale analysis and characterisation of pathologies within banked human autopsied brain tissue. Resolving tau structures at this level of resolution provides promising avenues for understanding mechanisms of pathology propagation in the different tauopathies as well as illuminating what contributes to disease heterogeneity.
Assuntos
Doença de Alzheimer/diagnóstico por imagem , Substância Cinzenta/patologia , Proteínas tau/química , Doença de Alzheimer/patologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/ultraestrutura , Imagem Óptica , Coloração e Rotulagem , Proteínas tau/ultraestruturaRESUMO
BACKGROUND: Serotonergic raphespinal neurons and their fibers have been mapped in large mammals, but the non-serotonergic ones have not been studied, especially in the mouse. The present study aimed to investigate the termination pattern of fibers arising from the hindbrain raphe and reticular nuclei which also have serotonergic neurons by injecting the anterograde tracer BDA into them. RESULTS: We found that raphespinal fibers terminate in both the dorsal and ventral horns in addition to lamina 10. There is a shift of the fibers in the ventral horn towards the dorsal and lateral part of the gray matter. Considerable variation in the termination pattern also exists between raphe nuclei with raphe magnus having more fibers terminating in the dorsal horn. Fibers from the adjacent gigantocellular reticular nucleus show similar termination pattern as those from the raphe nuclei with slight difference. Immunofluorescence staining showed that raphespinal fibers were heterogeneous and serotoninergic fibers were present in all laminae but mainly in laminae 1, 2, medial lamina 8, laminae 9 and 10. Surprisingly, immunofluorescence staining on clarified spinal cord tissue revealed that serotoninergic fibers formed bundles regularly in a short distance along the rostrocaudal axis in the medial part of the ventral horn and they extended towards the lateral motor neuron column area. CONCLUSION: Serotonergic and non-serotonergic fibers arising from the hindbrain raphe and reticular nuclei had similar termination pattern in the mouse spinal cord with subtle difference. The present study provides anatomical foundation for the multiple roles raphe and adjacent reticular nuclei play.
Assuntos
Fibras Nervosas/metabolismo , Núcleos da Rafe/metabolismo , Medula Espinal/metabolismo , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Dextranos/metabolismo , Imunofluorescência , Camundongos Endogâmicos C57BL , Neurônios Serotoninérgicos/metabolismo , Coloração e RotulagemRESUMO
GTF2IRD1 is one of the three members of the GTF2I gene family, clustered on chromosome 7 within a 1.8 Mb region that is prone to duplications and deletions in humans. Hemizygous deletions cause Williams-Beuren syndrome (WBS) and duplications cause WBS duplication syndrome. These copy number variations disturb a variety of developmental systems and neurological functions. Human mapping data and analyses of knockout mice show that GTF2IRD1 and GTF2I underpin the craniofacial abnormalities, mental retardation, visuospatial deficits and hypersociability of WBS. However, the cellular role of the GTF2IRD1 protein is poorly understood due to its very low abundance and a paucity of reagents. Here, for the first time, we show that endogenous GTF2IRD1 has a punctate pattern in the nuclei of cultured human cell lines and neurons. To probe the functional relationships of GTF2IRD1 in an unbiased manner, yeast two-hybrid libraries were screened, isolating 38 novel interaction partners, which were validated in mammalian cell lines. These relationships illustrate GTF2IRD1 function, as the isolated partners are mostly involved in chromatin modification and transcriptional regulation, whilst others indicate an unexpected role in connection with the primary cilium. Mapping of the sites of protein interaction also indicates key features regarding the evolution of the GTF2IRD1 protein. These data provide a visual and molecular basis for GTF2IRD1 nuclear function that will lead to an understanding of its role in brain, behaviour and human disease.
Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Montagem e Desmontagem da Cromatina , Cílios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Musculares/química , Proteínas Nucleares/química , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Transativadores/química , Técnicas do Sistema de Duplo-HíbridoRESUMO
The adaptive significance of variation in sperm phenotype is still largely unknown, in part due to the difficulties of observing and measuring sperm movement in its natural, selective environment (i.e., within the female reproductive tract). Computer-assisted sperm analysis systems allow objective and accurate measurement of sperm velocity, but rely on being able to track individual sperm, and are therefore unable to measure sperm movement in species where sperm move in trains or bundles. Here we describe a newly developed computational method for measuring sperm movement using Fourier analysis to estimate sperm tail beat frequency. High-speed time-lapse videos of sperm movement within the female tract of the neriid fly Telostylinus angusticollis were recorded, and a map of beat frequencies generated by converting the periodic signal of an intensity versus time trace at each pixel to the frequency domain using the Fourier transform. We were able to detect small decreases in sperm tail beat frequency over time, indicating the method is sensitive enough to identify consistent differences in sperm movement. Fourier analysis can be applied to a wide range of species and contexts, and should therefore facilitate novel exploration of the causes and consequences of variation in sperm movement.
Assuntos
Motilidade dos Espermatozoides , Espermatozoides/citologia , Animais , Dípteros , Feminino , Análise de Fourier , Processamento de Imagem Assistida por Computador , Masculino , Microscopia de Vídeo , Reprodução , Espermatozoides/químicaRESUMO
Drug delivery systems with improved tumor penetration are valuable assets as anticancer agents. A dextran-based nanocarrier system with aldehyde functionalities capable of forming an acid labile linkage with the chemotherapy drug doxorubicin was developed. Aldehyde dextran nanocarriers (ald-dex-dox) demonstrated efficacy as delivery vehicles with an IC50 of â¼300 nM against two-dimensional (2D) SK-N-BE(2) monolayers. Confocal imaging showed that the ald-dex-dox nanocarriers were rapidly internalized by SK-N-BE(2) cells. Fluorescence lifetime imaging microscopy (FLIM) analysis indicated that ald-dex-dox particles were internalized as intact complexes with the majority of the doxorubicin released from the particle four hours post uptake. Accumulation of the ald-dex-dox particles was significantly enhanced by â¼30% in the absence of glucose indicating a role for glucose and its receptors in their endocytosis. However, inhibition of clathrin dependent and independent endocytosis and macropinocytosis as well as membrane cholesterol depletion had no effect on ald-dex-dox particle accumulation. In three-dimensional (3D) SK-N-BE(2) tumor spheroids, which more closely resemble a solid tumor, the ald-dex-dox nanoparticles showed a significant improvement in efficacy over free doxorubicin, as evidenced by decreased spheroid outgrowth. Drug penetration studies in 3D demonstrated the ability of the ald-dex-dox nanocarriers to fully penetrate into a SK-N-BE(2) tumor spheroids, while doxorubicin only penetrates to a maximum distance of 50 µM. The ald-dex-dox nanocarriers represent a promising therapeutic delivery system for the treatment of solid tumors due to their unique enhanced penetration ability combined with their improved efficacy over the parent drug in 3D.
Assuntos
Antineoplásicos/administração & dosagem , Dextranos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/administração & dosagem , Endocitose/efeitos dos fármacos , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Dextranos/metabolismo , Doxorrubicina/metabolismo , Portadores de Fármacos/metabolismo , Endocitose/fisiologia , HumanosRESUMO
The integrity of the plasma membrane is critical to cell function and survival. Cells have developed multiple mechanisms to repair damaged plasma membranes. A key process during plasma membrane repair is to limit the size of the damage, which is facilitated by the presence of tetraspanin-enriched rings surrounding damage sites. Here, we identify phosphatidylserine-enriched rings surrounding damaged sites of the plasma membrane, resembling tetraspanin-enriched rings. Importantly, the formation of both the phosphatidylserine- and tetraspanin-enriched rings requires phosphatidylserine and its transfer proteins ORP5 and ORP9. Interestingly, ORP9, but not ORP5, is recruited to the damage sites, suggesting cells acquire phosphatidylserine from multiple sources upon plasma membrane damage. We further demonstrate that ORP9 contributes to efficient plasma membrane repair. Our results thus unveil a role for phosphatidylserine and its transfer proteins in facilitating the formation of tetraspanin-enriched macrodomains and plasma membrane repair.
Assuntos
Membrana Celular , Fosfatidilserinas , Tetraspaninas , Humanos , Células HeLa , Proteínas de Membrana/metabolismo , Receptores de Esteroides/metabolismoRESUMO
DPANN archaea are a diverse group of microorganisms characterised by small cells and reduced genomes. To date, all cultivated DPANN archaea are ectosymbionts that require direct cell contact with an archaeal host species for growth and survival. However, these interactions and their impact on the host species are poorly understood. Here, we show that a DPANN archaeon (Candidatus Nanohaloarchaeum antarcticus) engages in parasitic interactions with its host (Halorubrum lacusprofundi) that result in host cell lysis. During these interactions, the nanohaloarchaeon appears to enter, or be engulfed by, the host cell. Our results provide experimental evidence for a predatory-like lifestyle of an archaeon, suggesting that at least some DPANN archaea may have roles in controlling host populations and their ecology.
Assuntos
Halorubrum , Simbiose , Halorubrum/genética , Halorubrum/fisiologia , Archaea/genética , Archaea/fisiologia , Nanoarchaeota/genética , Nanoarchaeota/fisiologia , Genoma Arqueal , FilogeniaRESUMO
Posttraumatic syringomyelia (PTS) is an enigmatic condition characterized by the development of fluid-filled cysts (syrinxes) within the spinal cord. Perivascular spaces (PVS) are a critical component of fluid transport within the central nervous system (CNS), with dilated PVSs variably implicated in the pathogenesis of syringomyelia. The extent and spatial distribution of dilated PVSs in syringomyelia, however, remains unclear. This study aims to develop a method to assess PVS dimensions across multiple spinal cord segments in rats with PTS. Syrinxes were induced in two Sprague-Dawley rats at C6/7 with computer-controlled motorized spinal cord impaction; two control rats underwent sham laminectomies. Spinal cord segments were obtained at C4, C6 and C8, cleared via tissue clearing protocols, stained with immunofluorescent antibodies and imaged under confocal microscopy. Qualitative and quantitative analyses of PVS size were performed. Arteriolar PVSs were enlarged in the perisyringeal region of the spinal cord, compared to the control cord. No PVS enlargement was observed above or below the syrinx. These results confirm previous incidental findings of enlarged PVSs in the perisyringeal region, providing new insights into PVS dimensions across multiple spinal segments, and providing a novel method for quantifying spinal cord perivascular space size distributions.
Assuntos
Siringomielia , Ratos , Animais , Ratos Sprague-Dawley , Siringomielia/diagnóstico por imagem , Siringomielia/etiologia , Roedores , Sistema Nervoso Central , HipertrofiaRESUMO
BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.
RESUMO
Conferring biodegradability to nanoparticles is vitally important when nanomedicine applications are being targeted, as this prevents potential problems with bioaccumulation of byproducts after delivery. In this work, dextran has been modified (and rendered hydrophobic) by partial acetalation. A solid state NMR method was first developed to fully characterize the acetalated polymers. In a subsequent synthetic step, RAFT functionality was attached via residual unmodified hydroxyl groups. The RAFT groups were then used in a living free radical polymerization reaction to control the growth of hydrophilic PEG-methacrylate chains, thereby generating amphiphilic comblike polymers. The amphiphilic polymers were then self-assembled in water to form various morphologies, including small vesicles, wormlike rods, and micellar structures, with PEG at the periphery acting as a nonfouling biocompatible polymer layer. The acetalated dextran nanoparticles were designed for potential doxorubicin (DOX) delivery application based on the premise that in the cell compartments (endosome, lysozome) the acetalated dextran would hydrolyze, destroying the nanoparticle structure, releasing the encapsulated DOX. In-vitro studies confirmed minimal cytotoxicity of the (unloaded) nanoparticles, even after 3 days, proving that the hydrolysis products from the acetal groups (methanol and acetone) had no observable cytotoxic effect. An intriguing initial result is reported that in vitro studies of DOX-loaded dextran-nanoparticles (compared to free DOX) revealed an increased differential toxicity toward a cancer cell line when compared to a normal cell line. Efficient accumulation of DOX in a human neuroblastoma cell line (SY-5Y) was confirmed by both confocal microscopy and flow cytometry measurements. Furthermore, the time dependent release of DOX was monitored using fluorescence lifetime imaging microscopy (FLIM) in SY-5Y live cells. FLIM revealed bimodal lifetime distributions, showing the accumulation of both DOX-loaded dextran-nanoparticles and subsequent release of DOX in the living cells. From FLIM data analysis, the amount of DOX released in SY-5Y cells was found to increase from 35% to 55% when the incubation time increased from 3 h to 24 h.
Assuntos
Dextranos/química , Doxorrubicina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Fibroblastos/citologia , Nanopartículas , Neuroblastoma/patologia , Polímeros/química , Antibióticos Antineoplásicos/farmacologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Neuroblastoma/tratamento farmacológicoRESUMO
In the following protocol, we describe the application of rapid fluorescence lifetime imaging to the measurement of membrane tension. The recent developments in tension sensing probes have resulted in probes which allow for quantification of membrane tension through measurement of fluorescence lifetime change with increasing or decreasing tension. In this protocol, we describe the acquisition and analysis steps required for these types of experiments and demonstrate how the fluorescence lifetime reports on change in membrane tension as a result of osmotic shock in live HeLa cells.
Assuntos
Pressão Osmótica , Células HeLa , Humanos , Imagem ÓpticaRESUMO
Infection control and aggressive antibiotic therapy play an important role in the management of airway infections in individuals with cystic fibrosis (CF). The responses of airway epithelial cells to pathogens are likely to contribute to the pathobiology of CF lung disease. Primary airway epithelial cells obtained from individuals with CF, cultured and differentiated at air-liquid interface (ALI), effectively mimic the structure and function of the in vivo airway epithelium. With the recent respiratory viral pandemics, ALI cultures were extensively used to model respiratory infections in vitro to facilitate physiologically relevant respiratory research. Immunofluorescence staining and imaging were used as an effective tool to provide a fundamental understanding of host-pathogen interactions and for exploring the therapeutic potential of novel or repurposed drugs. Therefore, we described an optimized quantitative fluorescence microscopy assay for the wholemount staining and imaging of epithelial cell markers to identify distinct cell populations and pathogen-specific targets in ALI cultures of human airway epithelial cells grown on permeable support insert membranes. We present a detailed methodology using a graphical user interface (GUI) package to quantify the detected signals on a tiled whole membrane. Our method provided an imaging strategy of the entire membrane, overcoming the common issue of undersampling and enabling unbiased quantitative analysis.
RESUMO
A key challenge in nanomedicine stems from the continued need for a systematic understanding of the delivery of nanoparticles in live cells. Complexities in delivery are often influenced by the biophysical characteristics of nanoparticles, where even subtle changes to nanoparticle designs can alter cellular uptake, transport and activity. Close examination of these processes, especially with imaging, offers important insights that can aid in future nanoparticle design or translation. Rapid fluorescence lifetime imaging microscopy (RapidFLIM) is a potentially valuable technology for examining intracellular mechanisms of nanoparticle delivery by directly correlating visual data with changes in the biological environment. To date, applications for this technology in nanoparticle research have not been explored. A PicoQuant RapidFLIM system was used together with commercial silica nanoparticles to follow particle uptake in glioblastoma cells. Importantly, RapidFLIM imaging showed significantly improved image acquisition speeds over traditional FLIM, which enabled the tracking of nanoparticle uptake into subcellular compartments. We determined mean lifetime changes and used this to delineate significant changes in nanoparticle lifetimes (>0.39 ns), which showed clustering of these tracks proximal to both extracellular and nuclear membrane boundaries. These findings demonstrate the ability of RapidFLIM to track, localize and quantify changes in single nanoparticle fluorescence lifetimes and highlight RapidFLIM as a valuable tool for multiparameter visualization and analysis of nanoparticle molecular dynamics in live cells.
Assuntos
Nanopartículas , Transporte Biológico , Microscopia de Fluorescência/métodos , Nanomedicina/métodosRESUMO
Nanoparticles hold great preclinical promise in cancer therapy but continue to suffer attrition through clinical trials. Advanced, three dimensional (3D) cellular models such as tumor spheroids can recapitulate elements of the tumor environment and are considered the superior model to evaluate nanoparticle designs. However, there is an important need to better understand nanoparticle penetration kinetics and determine how different cell characteristics may influence this nanoparticle uptake. A key challenge with current approaches for measuring nanoparticle accumulation in spheroids is that they are often static, losing spatial and temporal information which may be necessary for effective nanoparticle evaluation in 3D cell models. To overcome this challenge, we developed an analysis platform, termed the Determination of Nanoparticle Uptake in Tumor Spheroids (DONUTS), which retains spatial and temporal information during quantification, enabling evaluation of nanoparticle uptake in 3D tumor spheroids. Outperforming linear profiling methods, DONUTS was able to measure silica nanoparticle uptake to 10 µm accuracy in both isotropic and irregularly shaped cancer cell spheroids. This was then extended to determine penetration kinetics, first by a forward-in-time, center-in-space model, and then by mathematical modelling, which enabled the direct evaluation of nanoparticle penetration kinetics in different spheroid models. Nanoparticle uptake was shown to inversely relate to particle size and varied depending on the cell type, cell stiffness and density of the spheroid model. The automated analysis method we have developed can be applied to live spheroids in situ, for the advanced evaluation of nanoparticles as delivery agents in cancer therapy.
Assuntos
Nanopartículas , Neoplasias , Humanos , Tamanho da Partícula , Análise Espaço-Temporal , Esferoides CelularesRESUMO
The biogenesis of lipid droplets (LDs), key organelles for cellular lipid storage and homeostasis, remains poorly understood. Seipin is essential to normal LD biogenesis but exactly how it regulates LD initiation remains to be elucidated. Our previous results suggested that seipin may bind anionic phospholipids such as PI(3)P. Here, we investigate whether PI(3)P is functionally linked to seipin and whether PI(3)P can also impact LD biogenesis. In seipin-deficient cells, there were enlarged PI(3)P puncta where its effector, DFCP1, also appeared to congregate. Reducing cellular PI(3)P partially rescued the defective LD initiation caused by seipin deficiency. Increasing PI(3)P impeded the lipidation of nascent LDs. We further demonstrated that DFCP1 localized to LDs and facilitated the efficient lipidation of nascent LDs. However, the normal function and localization of DFCP1 were disrupted when cellular PI(3)P homeostasis was perturbed. Our results thus identify PI(3)P as a novel regulator of LD initiation and suggest that PI(3)P may impact the biogenesis of LDs through DFCP1.