Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 223(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38530252

RESUMO

The integrity of the plasma membrane is critical to cell function and survival. Cells have developed multiple mechanisms to repair damaged plasma membranes. A key process during plasma membrane repair is to limit the size of the damage, which is facilitated by the presence of tetraspanin-enriched rings surrounding damage sites. Here, we identify phosphatidylserine-enriched rings surrounding damaged sites of the plasma membrane, resembling tetraspanin-enriched rings. Importantly, the formation of both the phosphatidylserine- and tetraspanin-enriched rings requires phosphatidylserine and its transfer proteins ORP5 and ORP9. Interestingly, ORP9, but not ORP5, is recruited to the damage sites, suggesting cells acquire phosphatidylserine from multiple sources upon plasma membrane damage. We further demonstrate that ORP9 contributes to efficient plasma membrane repair. Our results thus unveil a role for phosphatidylserine and its transfer proteins in facilitating the formation of tetraspanin-enriched macrodomains and plasma membrane repair.


Assuntos
Membrana Celular , Fosfatidilserinas , Tetraspaninas , Humanos , Células HeLa , Proteínas de Membrana/metabolismo , Receptores de Esteroides/metabolismo
2.
Nat Commun ; 15(1): 6449, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085207

RESUMO

DPANN archaea are a diverse group of microorganisms characterised by small cells and reduced genomes. To date, all cultivated DPANN archaea are ectosymbionts that require direct cell contact with an archaeal host species for growth and survival. However, these interactions and their impact on the host species are poorly understood. Here, we show that a DPANN archaeon (Candidatus Nanohaloarchaeum antarcticus) engages in parasitic interactions with its host (Halorubrum lacusprofundi) that result in host cell lysis. During these interactions, the nanohaloarchaeon appears to enter, or be engulfed by, the host cell. Our results provide experimental evidence for a predatory-like lifestyle of an archaeon, suggesting that at least some DPANN archaea may have roles in controlling host populations and their ecology.


Assuntos
Halorubrum , Simbiose , Halorubrum/genética , Halorubrum/fisiologia , Archaea/genética , Archaea/fisiologia , Nanoarchaeota/genética , Nanoarchaeota/fisiologia , Genoma Arqueal , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa