Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(26): e202303561, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37032313

RESUMO

A concept for obtaining isoreticular compounds with tri- instead of tetravalent metal cations using highly acidic reaction conditions was developed and successfully applied in a high throughput study using N,N'-piperazinebis(methylenephosphonic acid) (H4 PMP), that resulted in the discovery of a new porous aluminium phosphonate denoted CAU-60⋅6 HCl. The high-throughput study was subsequently extended to other trivalent metal ions. Al-CAU-60⋅6 HCl demonstrates reversible desorption of HCl (18.3 wt % loading) with three distinct compositions observed with zero, four or six HCl molecules per formula unit. Structural changes were followed in detail by powder X-ray diffraction, EDX analysis as well as IR spectroscopy. Rapid desorption of HCl in water within minutes and subsequent adsorption from the gas phase and from aqueous solution are shown. Furthermore, it is possible to adsorb HBr into the guest free Al-CAU-60 framework, demonstrating the high stability of this compound.


Assuntos
Estruturas Metalorgânicas , Organofosfonatos , Alumínio , Adsorção , Porosidade , Água
2.
Chemistry ; 28(55): e202201281, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35802315

RESUMO

DUT-8(Ni) metal-organic framework (MOF) belongs to the family of flexible pillared layer materials. The desolvated framework can be obtained in the open pore form (op) or in the closed pore form (cp), depending on the crystal size regime. In the present work, we report on the behaviour of desolvated DUT-8(Ni) at elevated temperatures. For both, op and cp variants, heating causes a structural transition, leading to a new, crystalline compound, containing two interpenetrated networks. The state of the framework before transition (op vs. cp) influences the transition temperature: the small particles of the op phase transform at significantly lower temperature in comparison to the macroparticles of the cp phase, transforming close to the decomposition temperature. The new compound, confined closed pore phase (ccp), was characterized by powder X-ray diffraction and spectroscopic techniques, such as IR, EXAFS, and positron annihilation lifetime spectroscopy (PALS). Thermal effects of structural transitions were studied using differential scanning calorimetry (DSC), showing an overall exothermic effect of the process, involving bond breaking and reformation. Theoretical calculations reveal the energetics, driving the observed temperature induced phase transition.

3.
Chemistry ; 27(52): 13211-13220, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34319601

RESUMO

Direct conversion of methane (CH4 ) to fuels and other high value-added chemicals is an attractive technology in the chemical industry; however, practical challenges to sustainable processes remain. Herein, we report the preparation of a heterostructured Co-doped MgO-based catalyst through topological transformation of a MgCo-layered double hydroxide (LDH) calcination from 200 to 1100 °C. Remarkably, the catalyst can activate CH4 coupling to produce C2 H6 with a selectivity of 41.60 % within 3 h under full-spectrum irradiation through calcination of LDH at 800 °C. Characterization studies and catalytic results suggest that the highly dispersed active sites and large interfaces amongst the Co-doped MgO-based catalysts enable surface activation of CH4 to methyl (CH3 *), in turn promoting coupling of CH3 * to C2 H6 . This study introduces a promising pathway for photodriven CH4 coupling to give high value-added chemicals by using layered double hydroxides as a precursor.

4.
Nat Mater ; 18(4): 370-376, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886398

RESUMO

Metal-organic frameworks (MOFs) are microporous materials with huge potential for chemical processes. Structural collapse at high pressure, and transitions to liquid states at high temperature, have recently been observed in the zeolitic imidazolate framework (ZIF) family of MOFs. Here, we show that simultaneous high-pressure and high-temperature conditions result in complex behaviour in ZIF-62 and ZIF-4, with distinct high- and low-density amorphous phases occurring over different regions of the pressure-temperature phase diagram. In situ powder X-ray diffraction, Raman spectroscopy and optical microscopy reveal that the stability of the liquid MOF state expands substantially towards lower temperatures at intermediate, industrially achievable pressures and first-principles molecular dynamics show that softening of the framework coordination with pressure makes melting thermodynamically easier. Furthermore, the MOF glass formed by melt quenching the high-temperature liquid possesses permanent, accessible porosity. Our results thus imply a route to the synthesis of functional MOF glasses at low temperatures, avoiding decomposition on heating at ambient pressure.

5.
Inorg Chem ; 59(20): 15250-15261, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32993295

RESUMO

Acetic acid, an alternative green solvent, was utilized for the solvothermal synthesis of four 2D materials of composition [Zr2O2(OAc)2(BDC-F)], [Zr2O2(OAc)2(BDC-F4)], [Zr2O2(OAc)2(BDC)], and [Zr2O2(OAc)2(NDC)] (BDC, terephthalate; BDC-F, 2-fluoroterephthalate; BDC-F4, tetrafluoroterephthalate; NDC, 2,6-naphthalenedicarboxylate). The first three compounds were subsequently reacted with terephthalic acid in solid-state reactions to form porous MIL-140A-type metal-organic frameworks and mixed-linker derivatives ([ZrO(BDC)1-x(BDC-Y)x], x = 0-0.18, Y = F, F4). The reaction kinetics of the formation of MIL-140A were investigated with the aid of time-resolved synchrotron and temperature-resolved in-house X-ray powder diffraction experiments. Thorough compositional analyses and solid-state NMR spectroscopic experiments were used to assess the crystallographic ordering of the different linker molecules. Additionally, acetic acid-based routes for the direct synthesis of MIL-140A-NO2 and a novel MIL-140A-(CH3)2 derivative were discovered.

6.
Phys Chem Chem Phys ; 22(34): 18860-18867, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32211712

RESUMO

The discovery of novel catalytic materials is predicated on understanding contemporary synthetic processes. With this fundamental knowledge in place it becomes possible to modify the final material with subtle changes to the synthesis process. In this vein, hierarchical materials, formed by the addition of a mesoporogen within the hydrothermal synthesis, have attracted a significant amount of attention due to their catalytic benefits over analogous microporous species. In this work we monitor the hydrothermal synthesis in situ of a hierarchical and a microporous aluminophosphate, for the first time, combining total scattering and pairwise distribution function data. In doing so we observe the local formation of the species, and the longer range crystallisation processes concurrently.

7.
Angew Chem Int Ed Engl ; 58(27): 9160-9165, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059170

RESUMO

While titanium-based metal-organic frameworks (MOFs) have been widely studied for their (photo)catalytic potential, only a few TiIV MOFs have been reported owing to the high reactivity of the employed titanium precursors. The synthesis of COK-47 is now presented, the first Ti carboxylate MOF based on sheets of TiIV O6 octahedra, which can be synthesized with a range of different linkers. COK-47 can be synthesized as an inherently defective nanoparticulate material, rendering it a highly efficient catalyst for the oxidation of thiophenes. Its structure was determined by continuous rotation electron diffraction and studied in depth by X-ray total scattering, EXAFS, and solid-state NMR. Furthermore, its photoactivity was investigated by electron paramagnetic resonance and demonstrated by catalytic photodegradation of rhodamine 6G.

8.
J Synchrotron Radiat ; 25(Pt 6): 1860-1868, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407199

RESUMO

In this article, the specification and application of the new double-sided YAG laser-heating system built on beamline I15 at Diamond Light Source are presented. This system, combined with diamond anvil cell and X-ray diffraction techniques, allows in situ and ex situ characterization of material properties at extremes of pressure and temperature. In order to demonstrate the reliability and stability of this experimental setup over a wide range of pressure and temperature, a case study was performed and the phase diagram of lead was investigated up to 80 GPa and 3300 K. The obtained results agree with previously published experimental and theoretical data, underlining the quality and reliability of the installed setup.

9.
Chemistry ; 22(10): 3264-3267, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26865194

RESUMO

The isoreticular analogue of the metal-organic framework UiO-66(Zr), synthesized with the flexible trans-1,4-cyclohexanedicarboxylic acid as linker, shows a peculiar breathing behavior by reversibly losing long-range crystalline order upon evacuation. The underlying flexibility is attributed to a concerted conformational contraction of up to two thirds of the linkers, which breaks the local lattice symmetry. X-ray scattering data are described well by a nanodomain model in which differently oriented tetragonal-type distortions propagate over about 7-10 unit cells.

10.
J Synchrotron Radiat ; 22(3): 853-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931106

RESUMO

Synchrotron light source facilities worldwide generate terabytes of data in numerous incompatible data formats from a wide range of experiment types. The Data Analysis WorkbeNch (DAWN) was developed to address the challenge of providing a single visualization and analysis platform for data from any synchrotron experiment (including single-crystal and powder diffraction, tomography and spectroscopy), whilst also being sufficiently extensible for new specific use case analysis environments to be incorporated (e.g. ARPES, PEEM). In this work, the history and current state of DAWN are presented, with two case studies to demonstrate specific functionality. The first is an example of a data processing and reduction problem using the generic tools, whilst the second shows how these tools can be targeted to a specific scientific area.

11.
Inorg Chem ; 54(23): 11186-92, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26588472

RESUMO

The mechanical properties of calcium fumarate trihydrate, a 1D coordination polymer considered for use as a calcium source for food and beverage enrichment, have been determined via nanoindentation and high-pressure X-ray diffraction with single crystals. The nanoindentation studies reveal that the elastic modulus (16.7-33.4 GPa, depending on crystallographic orientation), hardness (1.05-1.36 GPa), yield stress (0.70-0.90 GPa), and creep behavior (0.8-5.8 nm/s) can be rationalized in view of the anisotropic crystal structure; factors include the directionality of the inorganic Ca-O-Ca chain and hydrogen bonding, as well as the orientation of the fumarate ligands. High-pressure single-crystal X-ray diffraction studies show a bulk modulus of ∼ 20 GPa, which is indicative of elastic recovery intermediate between small molecule drug crystals and inorganic pharmaceutical ingredients. The combined use of nanoindentation and high-pressure X-ray diffraction techniques provides a complementary experimental approach for probing the critical mechanical properties related to tableting of these dietary supplements.


Assuntos
Suplementos Nutricionais , Fumaratos/química , Anisotropia , Cristalografia por Raios X , Elasticidade , Dureza , Ligação de Hidrogênio , Estresse Mecânico
12.
Angew Chem Int Ed Engl ; 54(22): 6447-51, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25873105

RESUMO

Desolvated zeolitic imidazolate framework ZIF-4(Zn) undergoes a discontinuous porous to dense phase transition on cooling through 140 K, with a 23 % contraction in unit cell volume. The structure of the non-porous, low temperature phase was determined from synchrotron X-ray powder diffraction data and its density was found to be slightly less than that of the densest ZIF phase, ZIF-zni. The mechanism of the phase transition involves a cooperative rotation of imidazolate linkers resulting in isotropic framework contraction and pore space minimization. DFT calculations established the energy of the new structure relative to those of the room temperature phase and ZIF-zni, while DSC measurements indicate the entropic stabilization of the porous room temperature phase at temperatures above 140 K.

13.
J Am Chem Soc ; 136(22): 7801-4, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24815319

RESUMO

Two analogous metal-organic frameworks (MOFs) with the perovskite architecture, [C(NH2)3][Mn(HCOO)3] (1) and [(CH2)3NH2][Mn(HCOO)3] (2), exhibit significantly different mechanical properties. The marked difference is attributed to their distinct modes of hydrogen bonding between the A-site amine cation and the anionic framework. The stronger cross-linking hydrogen bonding in 1 gives rise to Young's moduli and hardnesses that are up to twice those in 2, while the thermal expansion is substantially smaller. This study presents clear evidence that the mechanical properties of MOF materials can be substantially tuned via hydrogen-bonding interactions.

14.
J Phys Condens Matter ; 36(41)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38914103

RESUMO

Hybrid perovskites are a rapidly growing research area, having reached photovoltaic power conversion efficiencies of over 25%. There is a increasing consensus that the structures of these materials, and hence their electronic structures, cannot be understood purely from the time and space averaged crystal structures observable by conventional methods. We apply a symmetry-motivated analysis method to analyse x-ray pair distribution function data of the cubic phases of the hybrid perovskites MAPbX3(X= I, Br, Cl). We demonstrate that, even in the cubic phase, the local structure of the inorganic components of MAPbX3(X= I, Br, Cl), are dominated by scissoring type deformations of the PbX6octahedra. We find these modes to have a larger amplitude than equivalent distortions in theA-site deficient perovskite ScF3and demonstrate that they show a significant departure from the harmonic approximation. Calculations performed on an inorganic perovskite analogue, FrPbBr3, show that the large amplitudes of the scissoring modes are coupled to a dynamic opening of the electronic band gap. Finally, we use density functional theory calculations to show that the organic MA cations reorientate to accommodate the large amplitude scissoring modes.

15.
Chemistry ; 18(3): 887-98, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22161727

RESUMO

A Co-based metal-organic framework (MOF) was investigated as a catalytic material in the aerobic epoxidation of olefins in DMF and exhibited, based on catalyst mass, a remarkably high catalytic activity compared with the Co-doped zeolite catalysts that are typically used in this reaction. The structure of STA-12(Co) is similar to that of STA-12(Ni), as shown by XRD Rietveld refinement and is stable up to 270 °C. For the epoxidation reaction, significantly different selectivities were obtained depending on the substrate. Although styrene was epoxidized with low selectivity due to oligomerization, (E)-stilbene was converted with high selectivities between 80 and 90 %. Leaching of Co was low and the reaction was found to proceed mainly heterogeneously. The catalyst was reusable with only a small loss of activity. The catalytic epoxidation of stilbene with the MOF featured an induction period, which was, interestingly, considerably reduced by styrene/stilbene co-epoxidation. This could be traced back to the formation of benzaldehyde promoting the reaction. Detailed parameter and catalytic studies, including in situ EPR and EXAFS spectroscopy, were performed to obtain an initial insight into the reaction mechanism.

16.
J Am Chem Soc ; 133(5): 1266-9, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21214241

RESUMO

Crystalline microporous cobalt and nickel bisphosphonates with a hexagonal array of one-dimensional channels 1.8 nm in diameter have been prepared hydrothermally and provide the first example of the use of isoreticular chemistry in the synthesis of phosphonate metal-organic frameworks. The materials contain both physisorbed and coordinating water molecules in the as-prepared form, but these can be removed to give permanent extra-large microporosity, with pore volumes of up to 0.68 cm(3) g(-1), and coordinatively unsaturated sites, with concentrations up to 4.25 mmol g(-1).

17.
Nat Commun ; 12(1): 4097, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215743

RESUMO

Stimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology. The stimuli-dependent phase change of the frustrated MOFs involves non-correlated deformations of their inorganic building unit, as probed by a combination of global and local structure techniques together with computer simulations. Frustrated flexibility may be a common phenomenon in MOF structures, which are commonly regarded as rigid, and thus may be of crucial importance for the performance of these materials in various applications.

18.
Adv Mater ; 33(24): e2008683, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33960040

RESUMO

Self-assembly of iron oxide nanoparticles (IONPs) into 1D chains is appealing, because of their biocompatibility and higher mobility compared to 2D/3D assemblies while traversing the circulatory passages and blood vessels for in vivo biomedical applications. In this work, parameters such as size, concentration, composition, and magnetic field, responsible for chain formation of IONPs in a dispersion as opposed to spatially confining substrates, are examined. In particular, the monodisperse 27 nm IONPs synthesized by an extended LaMer mechanism are shown to form chains at 4 mT, which are lengthened with applied field reaching 270 nm at 2.2 T. The chain lengths are completely reversible in field. Using a combination of scattering methods and reverse Monte Carlo simulations the formation of chains is directly visualized. The visualization of real-space IONPs assemblies formed in dispersions presents a novel tool for biomedical researchers. This allows for rapid exploration of the behavior of IONPs in solution in a broad parameter space and unambiguous extraction of ​the parameters of the equilibrium structures. Additionally, it can be extended to study novel assemblies formed by more complex geometries of IONPs.


Assuntos
Compostos Férricos , Nanopartículas de Magnetita , Tamanho da Partícula
19.
Nanomaterials (Basel) ; 10(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872371

RESUMO

The response of the metal-organic framework aluminum-1,4-cyclohexanedicarboxylate or Al-CAU-13 (CAU: Christian Albrecht University) to the application of thermal and mechanical stimuli was investigated using synchrotron powder X-ray diffraction (SPXRD). Variable temperature in situ SPXRD data, over the range 80-500 K, revealed a complex evolution of the structure of the water guest containing Al-CAU-13H2O, the dehydration process from ca. 310 to 370 K, and also the evolution of the guest free Al-CAU-13 structure between ca. 370 and 500 K. Rietveld refinement allowed this complexity to be rationalized in the different regions of heating. The Berman thermal Equation of State was determined for the two structures (Al-CAU-13H2O and Al-CAU-13). Diamond anvil cell studies at elevated pressure (from ambient to up to ca. 11 GPa) revealed similarities in the structural responses on application of pressure and temperature. The ability of the pressure medium to penetrate the framework was also found to be important: non-penetrating silicone oil caused pressure induced amorphization, whereas penetrating helium showed no plastic deformation of the structure. Third-order Vinet equations of state were calculated and show Al-CAU-13H2O is a hard compound for a metal-organic framework material. The mechanical response of Al-CAU-13, with tetramethylpyrazine guests replacing water, was also investigated. Although the connectivity of the structure is the same, all the linkers have a linear e,e-conformation and the structure adopts a more open, wine-rack-like arrangement, which demonstrates negative linear compressibility (NLC) similar to Al-MIL-53 and a significantly softer mechanical response. The origin of this variation in behavior is attributed to the different linker conformation, demonstrating the influence of the S-shaped a,a-conformation on the response of the framework to external stimuli.

20.
Sci Rep ; 9(1): 15537, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664104

RESUMO

The isothermal equation of state of silicon has been determined by synchrotron x-ray diffraction experiments up to 105.2 GPa at room temperature using diamond anvil cells. A He-pressure medium was used to minimize the effect of uniaxial stress on the sample volume and ruby, gold and tungsten pressure gauges were used. Seven different phases of silicon have been observed along the experimental conditions covered in the present study.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa