RESUMO
Hepatitis C virus (HCV) is a significant public health concern with approximately 160 million people infected worldwide. HCV infection often results in chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. No vaccine is available and current therapies are effective against some, but not all, genotypes. HCV is an enveloped virus with two surface glycoproteins (E1 and E2). E2 binds to the host cell through interactions with scavenger receptor class B type I (SR-BI) and CD81, and serves as a target for neutralizing antibodies. Little is known about the molecular mechanism that mediates cell entry and membrane fusion, although E2 is predicted to be a class II viral fusion protein. Here we describe the structure of the E2 core domain in complex with an antigen-binding fragment (Fab) at 2.4 Å resolution. The E2 core has a compact, globular domain structure, consisting mostly of ß-strands and random coil with two small α-helices. The strands are arranged in two, perpendicular sheets (A and B), which are held together by an extensive hydrophobic core and disulphide bonds. Sheet A has an IgG-like fold that is commonly found in viral and cellular proteins, whereas sheet B represents a novel fold. Solution-based studies demonstrate that the full-length E2 ectodomain has a similar globular architecture and does not undergo significant conformational or oligomeric rearrangements on exposure to low pH. Thus, the IgG-like fold is the only feature that E2 shares with class II membrane fusion proteins. These results provide unprecedented insights into HCV entry and will assist in developing an HCV vaccine and new inhibitors.
Assuntos
Hepacivirus/química , Proteínas do Envelope Viral/química , Cristalografia por Raios X , Dissulfetos/química , Hepacivirus/fisiologia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão , Vacinas contra Hepatite Viral , Internalização do VírusRESUMO
UNLABELLED: Retargeting of gammaretroviral envelope proteins has shown promising results in the isolation of novel isolates with therapeutic potential. However, the optimal conditions required to obtain high-affinity retargeted envelope proteins with narrow tropism are not understood. This study highlights the advantage of constrained peptides within receptor binding domains and validates the random library screening technique of obtaining novel retargeted Env proteins. Using a modified vector backbone to screen the envelope libraries on 143B osteosarcoma cells, three novel and unique retargeted envelopes were isolated. The use of complex disulfide bonds within variable regions required for receptor binding is found within natural gammaretroviral envelope isolates. Interestingly, two of the isolates, named AII and BV2, have a pair of cysteines located within the randomized region of 11 amino acids similar to that identified within the CP Env, an isolate identified in a previous Env library screen on the human renal carcinoma Caki-1 cell line. The amino acids within the randomized region of AII and BV2 envelopes that are essential for viral infection have been identified in this study and include these cysteine residues. Through mutagenesis studies, the putative disulfide bond pairs including and beyond the randomized region were examined. In parallel, the disulfide bonds of CP Env were identified using mass spectrometry. The results indicate that this pair of cysteines creates the structural context to position key hydrophobic (F and W) and basic (K and H) residues critical for viral titer and suggest that AII, BV2, and CP internal cysteines bond together in distinct ways. IMPORTANCE: Retargeted gammaretroviral particles have broad applications for therapeutic use. Although great advances have been achieved in identifying new Env-host cell receptor pairs, the rules for designing optimal Env libraries are still unclear. We have found that isolates with an additional pair of cysteines within the randomized region have the highest transduction efficiencies. This emphasizes the importance of considering cysteine pairs in the design of new libraries. Furthermore, our data clearly indicate that these cysteines are essential for viral infectivity by presenting essential residues to the host cell receptor. These studies facilitate the screening of Env libraries for functional entry into target cells, allowing the identification of novel gammaretroviral Envs targeting alternative host cell receptors for gene and protein delivery.
Assuntos
Cisteína/metabolismo , Vírus da Leucemia Felina/fisiologia , Proteínas do Envelope Viral/metabolismo , Tropismo Viral , Ligação Viral , Linhagem Celular Tumoral , Cisteína/genética , Análise Mutacional de DNA , Dissulfetos , Testes Genéticos , Humanos , Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/isolamento & purificação , Espectrometria de Massas , Mutação de Sentido Incorreto , Proteínas do Envelope Viral/genéticaRESUMO
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Hepacivirus/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Reações Cruzadas , Portadores de Fármacos/administração & dosagem , Vetores Genéticos , Hepacivirus/genética , Vírus do Sarampo/genética , Camundongos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagemRESUMO
More than 120 million people worldwide are chronically infected with hepatitis C virus (HCV), making HCV infection the leading cause of liver transplantation in developed countries. Treatment is limited, and efficacy depends upon the infecting strain and the initial viral load. The HCV envelope glycoproteins (E1 and E2) are involved in receptor binding, virus-cell fusion, and entry into the host cell. HCV infection proceeds by endosomal acidification, suggesting that fusion of the viral envelope with cellular membranes is a pH-triggered event. E2 consists of an amino-terminal ectodomain, an amphipathic helix that forms a stem region, and a carboxy-terminal membrane-associating segment. We have devised a novel expression system for the production of a secreted form of E2 ectodomain (eE2) from mammalian cells and performed a comprehensive biochemical and biophysical characterization. eE2 is properly folded, as determined by binding to human CD81, blocking of infection of cell culture-derived HCV, and recognition by antibodies from patients chronically infected with different genotypes of HCV. The glycosylation pattern, number of disulfide bonds, oligomerization state, and secondary structure of eE2 have been characterized using mass spectrometry, size exclusion chromatography, circular dichroism, and analytical ultracentrifugation. These results advance the understanding of E2 and may assist in the design of an HCV vaccine and entry inhibitor.
Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Glicosilação , Humanos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas do Envelope Viral/genéticaRESUMO
Posttranslational modifications (PTMs) are often required for proper folding and physiological function of proteins, including the envelope glycoproteins 1 and 2 (E1 and E2) of hepatitis C virus (HCV). Commonly used expression systems such as bacteria, yeast, and baculovirus produce soluble HCV E1 and E2 at very low yields, as the cellular environment and molecular machinery necessary for PTMs may be suboptimal or missing. Here, we describe an expression system for HCV E2 ectodomain (eE2) with 11 N-linked glycans and eight disulfide bonds, which combines lentivirus transduction of mammalian cells and a continuous growth, adherent cell bioreactor. It is environmentally friendly, as well as cost- and time-efficient compared to other methods of recombinant protein expression in mammalian systems with final yields of eE2 approaching 60 mg/L of cell culture supernatant. eE2 produced by this system is amenable to a variety of biophysical studies, including structural determination by X-ray crystallography. Considering the ease of use and flexibility, this method can be applied to express an array of difficult target proteins in a variety of mammalian cell lines.
Assuntos
Clonagem Molecular/métodos , Hepacivirus/genética , Proteínas do Envelope Viral/genética , Animais , Reatores Biológicos , Células CHO , Linhagem Celular , Cricetulus , Expressão Gênica , Células HEK293 , Hepatite C/virologia , Humanos , Lentivirus/genética , Plasmídeos/genética , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Transdução GenéticaRESUMO
Andes virus (ANDV), a member of the Hantavirus genus in the family Bunyaviridae, causes an acute disease characteristic of New-World hantaviruses called hantavirus pulmonary syndrome (HPS). HPS is a highly pathogenic disease with a case-fatality rate of 40%. ANDV is the only hantavirus reported to spread directly from human-to-human. The aim of the present study was to develop a quantitative and high-throughput pseudovirion assay to study ANDV infection and neutralization in biosafety level 2 facilities (BSL-2). This pseudovirion assay is based on incorporation of ANDV glycoproteins onto replication-defective vesicular stomatitis virus (VSV) cores in which the gene for the surface G protein has been replaced by that encoding Renilla luciferase. Infection by the pseudovirions can be quantified by luciferase activity of infected cell lysates. ANDV pseudovirions were neutralized by ANDV-specific antisera, and there was good concordance between specificity and neutralization titers of ANDV hamster sera as determined by our pseudovirion assay and a commonly used plaque reduction neutralization titer (PRNT) assay. In addition, the pseudovirions were used to evaluate the requirements for ANDV entry, like pH dependency and the role of beta3 integrin, the reported receptor for other pathogenic hantaviruses, on entry.