Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7783-7791, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869099

RESUMO

The increasing use of low-cost lithium iron phosphate cathodes in low-end electric vehicles has sparked interest in Prussian blue analogues (PBAs) for lithium-ion batteries. A major challenge with iron hexacyanoferrate (FeHCFe), particularly in lithium-ion systems, is its slow kinetics in organic electrolytes and valence state inactivation in aqueous ones. We have addressed these issues by developing a polymeric cathode electrolyte interphase (CEI) layer through a ring-opening reaction of ethylene carbonate triggered by OH- radicals from structural water. This facile approach considerably mitigates the sluggish electrochemical kinetics typically observed in organic electrolytes. As a result, FeHCFe has achieved a specific capacity of 125 mAh g-1 with a stable lifetime over 500 cycles, thanks to the effective activation of Fe low-spin states and the structural integrity of the CEI layers. These advancements shed light on the potential of PBAs to be viable, durable, and efficient cathode materials for commercial use.

2.
Angew Chem Int Ed Engl ; : e202403671, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38887161

RESUMO

Electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) to valuable liquid fuels, such as formic acid/formate (HCOOH/HCOO-) is a promising strategy for carbon neutrality. Enhancing CO2RR activity while retaining high selectivity is critical for commercialization. To address this, we developed metal-doped bismuth (Bi) nanosheets via a facile hydrolysis method. These doped nanosheets efficiently generated high-purity HCOOH using a porous solid electrolyte (PSE) layer. Among the evaluated metal-doped Bi catalysts, Co-doped Bi demonstrated improved CO2RR performance compared to pristine Bi, achieving ~90 % HCOO- selectivity and boosted activity with a low overpotential of ~1.0 V at a current density of 200 mA cm-2. In a solid electrolyte reactor, Co-doped Bi maintained HCOOH Faradaic efficiency of ~72 % after a 100-hour operation under a current density of 100 mA cm-2, generating 0.1 M HCOOH at 3.2 V. Density functional theory (DFT) results revealed that Co-doped Bi required a lower applied potential for HCOOH generation from CO2, due to stronger binding energy to the key intermediates OCHO* compared to pure Bi. This study shows that metal doping in Bi nanosheets modifies the chemical composition, element distribution, and morphology, improving CO2RR catalytic activity performance by tuning surface adsorption affinity and reactivity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa