Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070766

RESUMO

PUF RNA-binding proteins are conserved stem cell regulators. Four PUF proteins govern self-renewal of Caenorhabditis elegans germline stem cells together with two intrinsically disordered proteins, LST-1 and SYGL-1. Based on yeast two-hybrid results, we previously proposed a composite self-renewal hub in the stem cell regulatory network, with eight PUF partnerships and extensive redundancy. Here, we investigate LST-1-PUF and SYGL-1-PUF partnerships and their molecular activities in their natural context - nematode stem cells. We confirm LST-1-PUF partnerships and their specificity to self-renewal PUFs by co-immunoprecipitation and show that an LST-1(AmBm) mutant defective for PUF-interacting motifs does not complex with PUFs in nematodes. LST-1(AmBm) is used to explore the in vivo functional significance of the LST-1-PUF partnership. Tethered LST-1 requires this partnership to repress expression of a reporter RNA, and LST-1 requires the partnership to co-immunoprecipitate with NTL-1/Not1 of the CCR4-NOT complex. We suggest that the partnership provides multiple molecular interactions that work together to form an effector complex on PUF target RNAs in vivo. Comparison of LST-1-PUF and Nanos-Pumilio reveals fundamental molecular differences, making LST-1-PUF a distinct paradigm for PUF partnerships.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , RNA/metabolismo , Células-Tronco/metabolismo
2.
Nature ; 582(7811): 283-288, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499657

RESUMO

Mobile genetic elements threaten genome integrity in all organisms. RDE-3 (also known as MUT-2) is a ribonucleotidyltransferase that is required for transposon silencing and RNA interference in Caenorhabditis elegans1-4. When tethered to RNAs in heterologous expression systems, RDE-3 can add long stretches of alternating non-templated uridine (U) and guanosine (G) ribonucleotides to the 3' termini of these RNAs (designated poly(UG) or pUG tails)5. Here we show that, in its natural context in C. elegans, RDE-3 adds pUG tails to targets of RNA interference, as well as to transposon RNAs. RNA fragments attached to pUG tails with more than 16 perfectly alternating 3' U and G nucleotides become gene-silencing agents. pUG tails promote gene silencing by recruiting RNA-dependent RNA polymerases, which use pUG-tailed RNAs (pUG RNAs) as templates to synthesize small interfering RNAs (siRNAs). Our results show that cycles of pUG RNA-templated siRNA synthesis and siRNA-directed pUG RNA biogenesis underlie double-stranded-RNA-directed transgenerational epigenetic inheritance in the C. elegans germline. We speculate that this pUG RNA-siRNA silencing loop enables parents to inoculate progeny against the expression of unwanted or parasitic genetic elements.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/parasitologia , Epigênese Genética/genética , Genoma/genética , Hereditariedade , Poli G/genética , Poli U/genética , RNA Mensageiro/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Nucleotidiltransferases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/metabolismo , Moldes Genéticos
3.
Proc Natl Acad Sci U S A ; 117(38): 23539-23547, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32907940

RESUMO

RNA movements and localization pervade biology, from embryonic development to disease. To identify RNAs at specific locations, we developed a strategy in which a uridine-adding enzyme is anchored to subcellular sites, where it directly marks RNAs with 3' terminal uridines. This localized RNA recording approach yields a record of RNA locations, and is validated through identification of RNAs localized selectively to the endoplasmic reticulum (ER) or mitochondria. We identify a broad dual localization pattern conserved from yeast to human cells, in which the same battery of mRNAs encounter both ER and mitochondria in both species, and include an mRNA encoding a key stress sensor. Subunits of many multiprotein complexes localize to both the ER and mitochondria, suggesting coordinated assembly. Noncoding RNAs in the course of RNA surveillance and processing encounter both organelles. By providing a record of RNA locations over time, the approach complements those that capture snapshots of instantaneous positions.


Assuntos
RNA Fúngico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Humanos , Mitocôndrias/química , Mitocôndrias/metabolismo , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina
4.
Development ; 146(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31515205

RESUMO

PUF RNA-binding proteins have diverse roles in animal development, with a broadly conserved role in stem cells. Two paradigmatic PUF proteins, FBF-1 and FBF-2, promote both self-renewal and differentiation in the C. elegans germline. The LST-1 protein is a pivotal regulator of self-renewal and is oncogenic when mis-expressed. Here, we demonstrate that LST-1 self-renewal activity resides within a predicted disordered region that harbors two KXXL motifs. We find that the KXXL motifs mediate the binding of LST-1 to FBF, and that point mutations of these motifs abrogate LST-1 self-renewal activity. The LST-1-FBF partnership is therefore crucial to stem cell maintenance and is a key element in the FBF regulatory network. A distinct region within LST-1 determines its spatial expression and size of the GSC pool. Most importantly, the molecular understanding of how an IDR-rich protein works in an essential partnership with a conserved stem cell regulator and RNA-binding protein suggests broad new avenues for combinatorial control.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Células-Tronco/citologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Modelos Biológicos , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido
5.
Nat Methods ; 16(5): 437-445, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988468

RESUMO

Ribonucleotidyl transferases (rNTases) add untemplated ribonucleotides to diverse RNAs. We have developed TRAID-seq, a screening strategy in Saccharomyces cerevisiae to identify sequences added to a reporter RNA at single-nucleotide resolution by overexpressed candidate enzymes from different organisms. The rNTase activities of 22 previously unexplored enzymes were determined. In addition to poly(A)- and poly(U)-adding enzymes, we identified a cytidine-adding enzyme that is likely to be part of a two-enzyme system that adds CCA to tRNAs in a eukaryote; a nucleotidyl transferase that adds nucleotides to RNA without apparent nucleotide preference; and a poly(UG) polymerase, Caenorhabditis elegans MUT-2, that adds alternating uridine and guanosine nucleotides to form poly(UG) tails. MUT-2 is known to be required for certain forms of RNA silencing, and mutants of the enzyme that result in defective silencing did not add poly(UG) tails in our assay. We propose that MUT-2 poly(UG) polymerase activity is required to promote genome integrity and RNA silencing.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Nucleotidiltransferases/genética , Interferência de RNA , RNA Nucleotidiltransferases/genética , Saccharomyces cerevisiae/genética , Animais , Caenorhabditis elegans/enzimologia , Mutação , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
7.
Nucleic Acids Res ; 47(16): 8770-8784, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31294800

RESUMO

PUF proteins, named for Drosophila Pumilio (PUM) and Caenorhabditis elegans fem-3-binding factor (FBF), recognize specific sequences in the mRNAs they bind and control. RNA binding by classical PUF proteins is mediated by a characteristic PUM homology domain (PUM-HD). The Puf1 and Puf2 proteins possess a distinct architecture and comprise a highly conserved subfamily among fungal species. Puf1/Puf2 proteins contain two types of RNA-binding domain: a divergent PUM-HD and an RNA recognition motif (RRM). They recognize RNAs containing UAAU motifs, often in clusters. Here, we report a crystal structure of the PUM-HD of a fungal Puf1 in complex with a dual UAAU motif RNA. Each of the two UAAU tetranucleotides are bound by a Puf1 PUM-HD forming a 2:1 protein-to-RNA complex. We also determined crystal structures of the Puf1 RRM domain that identified a dimerization interface. The PUM-HD and RRM domains act in concert to determine RNA-binding specificity: the PUM-HD dictates binding to UAAU, and dimerization of the RRM domain favors binding to dual UAAU motifs rather than a single UAAU. Cooperative action of the RRM and PUM-HD identifies a new mechanism by which multiple RNA-binding modules in a single protein collaborate to create a unique RNA-binding specificity.


Assuntos
RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Biblioteca Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Nat Rev Mol Cell Biol ; 9(4): 337-44, 2008 04.
Artigo em Inglês | MEDLINE | ID: mdl-18334997

RESUMO

Dynamic changes of the lengths of mRNA poly(A) tails are catalysed by diverse deadenylase enzymes. Modulating the length of the poly(A) tail of an mRNA is a widespread means of controlling protein production and mRNA stability. Recent insights illuminate the specialized activities, biological functions and regulation of deadenylases. We propose that the recruitment of multifunctional deadenylase complexes provides unique opportunities to control mRNAs and that the heterogeneity of the deadenylase complexes is exploited to control translation and mRNA stability.


Assuntos
Regulação da Expressão Gênica/genética , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Animais , Humanos , RNA Mensageiro/genética
9.
PLoS Genet ; 13(12): e1007121, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29232700

RESUMO

Central questions in regenerative biology include how stem cells are maintained and how they transition from self-renewal to differentiation. Germline stem cells (GSCs) in Caeno-rhabditis elegans provide a tractable in vivo model to address these questions. In this system, Notch signaling and PUF RNA binding proteins, FBF-1 and FBF-2 (collectively FBF), maintain a pool of GSCs in a naïve state. An open question has been how Notch signaling modulates FBF activity to promote stem cell self-renewal. Here we report that two Notch targets, SYGL-1 and LST-1, link niche signaling to FBF. We find that SYGL-1 and LST-1 proteins are cytoplasmic and normally restricted to the GSC pool region. Increasing the distribution of SYGL-1 expands the pool correspondingly, and vast overexpression of either SYGL-1 or LST-1 generates a germline tumor. Thus, SYGL-1 and LST-1 are each sufficient to drive "stemness" and their spatial restriction prevents tumor formation. Importantly, SYGL-1 and LST-1 can only drive tumor formation when FBF is present. Moreover, both proteins interact physically with FBF, and both are required to repress a signature FBF mRNA target. Together, our results support a model in which SYGL-1 and LST-1 form a repressive complex with FBF that is crucial for stem cell maintenance. We further propose that progression from a naïve stem cell state to a state primed for differentiation relies on loss of SYGL-1 and LST-1, which in turn relieves FBF target RNAs from repression. Broadly, our results provide new insights into the link between niche signaling and a downstream RNA regulatory network and how this circuitry governs the balance between self-renewal and differentiation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/genética , Autorrenovação Celular/genética , Peptídeo 1 Semelhante ao Glucagon/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Meiose/genética , RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(14): E2816-E2825, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320951

RESUMO

Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.


Assuntos
Proteínas Fúngicas/genética , Redes Reguladoras de Genes , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas , Aspergillus nidulans/genética , Sítios de Ligação , Evolução Molecular , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora crassa/genética , Filogenia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Trends Biochem Sci ; 40(3): 157-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25636997

RESUMO

RNA-protein interactions are pervasive. The specificity of these interactions dictates which RNAs are controlled by what protein. Here we describe a class of revolutionary new methods that enable global views of RNA-binding specificity in vitro, for both single proteins and multiprotein complexes. These methods provide insight into central issues in RNA regulation in living cells, including understanding the balance between free and bound components, the basis for exclusion of binding sites, detection of binding events in the absence of discernible regulatory elements, and new approaches to targeting endogenous transcripts by design. Comparisons of in vitro and in vivo binding provide a foundation for comprehensive understanding of the biochemistry of protein-mediated RNA regulatory networks.


Assuntos
Redes Reguladoras de Genes , Genômica/métodos , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Animais , Sítios de Ligação , Humanos , RNA/genética , Proteínas de Ligação a RNA/genética , Sequências Reguladoras de Ácido Nucleico
12.
RNA ; 23(11): 1636-1647, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28768715

RESUMO

A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution.


Assuntos
Redes Reguladoras de Genes , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Modelos Moleculares , Nucleotidiltransferases/metabolismo , Ligação Proteica , RNA Fúngico/química , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
13.
Proc Natl Acad Sci U S A ; 113(5): 1279-84, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787882

RESUMO

Cellular RNA-protein (RNP) granules are ubiquitous and have fundamental roles in biology and RNA metabolism, but the molecular basis of their structure, assembly, and function is poorly understood. Using nematode "P-granules" as a paradigm, we focus on the PGL granule scaffold protein to gain molecular insights into RNP granule structure and assembly. We first identify a PGL dimerization domain (DD) and determine its crystal structure. PGL-1 DD has a novel 13 α-helix fold that creates a positively charged channel as a homodimer. We investigate its capacity to bind RNA and discover unexpectedly that PGL-1 DD is a guanosine-specific, single-stranded endonuclease. Discovery of the PGL homodimer, together with previous results, suggests a model in which the PGL DD dimer forms a fundamental building block for P-granule assembly. Discovery of the PGL RNase activity expands the role of RNP granule assembly proteins to include enzymatic activity in addition to their job as structural scaffolds.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Ribonucleases/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis/metabolismo , Cristalografia por Raios X , Grânulos Citoplasmáticos/química , Modelos Moleculares , Dados de Sequência Molecular , Ribonucleases/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
Nat Methods ; 12(12): 1163-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26524240

RESUMO

Protein-RNA networks are ubiquitous and central in biological control. We present an approach termed RNA Tagging that enables the user to identify protein-RNA interactions in vivo by analyzing purified cellular RNA, without protein purification or cross-linking. An RNA-binding protein of interest is fused to an enzyme that adds uridines to the end of RNA. RNA targets bound by the chimeric protein in vivo are covalently marked with uridines and subsequently identified from extracted RNA via high-throughput sequencing. We used this approach to identify hundreds of RNAs bound by a Saccharomyces cerevisiae PUF protein, Puf3p. The results showed that although RNA-binding proteins productively bind specific RNAs to control their function, they also 'sample' RNAs without exerting a regulatory effect. We used the method to uncover hundreds of new and likely regulated targets for a protein without canonical RNA-binding domains, Bfr1p. RNA Tagging is well suited to detect and analyze protein-RNA networks in vivo.


Assuntos
RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiões 3' não Traduzidas/genética , Sítios de Ligação , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
RNA ; 22(7): 1026-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27165521

RESUMO

PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their "binding landscape"). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF-RNA interactions. FBF-1 and FBF-2 can bind sites in the 5'UTR, coding region, or 3'UTR, but have a strong bias for the 3' end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
16.
Proc Natl Acad Sci U S A ; 112(52): 15868-73, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668354

RESUMO

Pumilio/fem-3 mRNA binding factor (PUF) proteins bind RNA with sequence specificity and modularity, and have become exemplary scaffolds in the reengineering of new RNA specificities. Here, we report the in vivo RNA binding sites of wild-type (WT) and reengineered forms of the PUF protein Saccharomyces cerevisiae Puf2p across the transcriptome. Puf2p defines an ancient protein family present throughout fungi, with divergent and distinctive PUF RNA binding domains, RNA-recognition motifs (RRMs), and prion regions. We identify sites in RNA bound to Puf2p in vivo by using two forms of UV cross-linking followed by immunopurification. The protein specifically binds more than 1,000 mRNAs, which contain multiple iterations of UAAU-binding elements. Regions outside the PUF domain, including the RRM, enhance discrimination among targets. Compensatory mutants reveal that one Puf2p molecule binds one UAAU sequence, and align the protein with the RNA site. Based on this architecture, we redesign Puf2p to bind UAAG and identify the targets of this reengineered PUF in vivo. The mutant protein finds its target site in 1,800 RNAs and yields a novel RNA network with a dramatic redistribution of binding elements. The mutant protein exhibits even greater RNA specificity than wild type. The redesigned protein decreases the abundance of RNAs in its redesigned network. These results suggest that reengineering using the PUF scaffold redirects and can even enhance specificity in vivo.


Assuntos
Motivos de Nucleotídeos/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Bases , Sítios de Ligação/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Modelos Genéticos , Mutação , Filogenia , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética
17.
RNA ; 21(7): 1335-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26015597

RESUMO

RNA-regulatory factors bound to 3' UTRs control translation and stability. Repression often is associated with poly(A) removal. The deadenylase CAF1 is a core component of the CCR4-NOT complex. Our prior studies established that CAF1 represses translation independent of deadenylation. We sought the mechanism of its deadenylation-independent repression in Xenopus oocytes. Our data reveal a chain of interacting proteins that links CAF1 to CCR4-NOT and to Xp54 and 4E-T. Association of CAF1 with NOT1, the major subunit of CCR4-NOT, is required for repression by CAF1 tethered to a reporter mRNA. Affinity purification-mass spectrometry and coimmunoprecipitation revealed that at least five members of the CCR4-NOT complex were recruited by CAF1. The recruitment of these proteins required NOT1, as did the ability of tethered CAF1 to repress translation. In turn, NOT1 was needed to recruit Xp54 and 4E-T. We examined the role of 4E-T in repression using mutations that disrupted either eIF4E-dependent or -independent mechanisms. Expression of a 4E-T truncation that still bound eIF4E alleviated repression by tethered CAF1, NOT1, and Xp54. In contrast, a mutant 4E-T that failed to bind eIF4E did not. Repression of global translation was affected only by the eIF4E-dependent mechanism. Reporters bearing IRES elements revealed that repression via tethered CAF1 and Xp54 is cap- and eIF4E-independent, but requires one or more of eIF4A, eIF4B, and eIF4G. We propose that RNA-binding proteins, and perhaps miRNAs, repress translation through an analogous chain of interactions that begin with the 3' UTR-bound repressor and end with the noncanonical activity of 4E-T.


Assuntos
Proteínas de Transporte Nucleocitoplasmático/metabolismo , Biossíntese de Proteínas/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Animais , Humanos , Imunoprecipitação , Espectrometria de Massas , Xenopus
18.
Development ; 139(8): 1509-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22399679

RESUMO

The modification of transcriptional regulation is a well-documented evolutionary mechanism in both plants and animals, but post-transcriptional controls have received less attention. The derived hermaphrodite of C. elegans has regulated spermatogenesis in an otherwise female body. The PUF family RNA-binding proteins FBF-1 and FBF-2 limit XX spermatogenesis by repressing the male-promoting proteins FEM-3 and GLD-1. Here, we examine the function of PUF homologs from other Caenorhabditis species, with emphasis on C. briggsae, which evolved selfing convergently. C. briggsae lacks a bona fide fbf-1/2 ortholog, but two members of the related PUF-2 subfamily, Cbr-puf-2 and Cbr-puf-1.2, do have a redundant germline sex determination role. Surprisingly, this is to promote, rather than limit, hermaphrodite spermatogenesis. We provide genetic, molecular and biochemical evidence that Cbr-puf-2 and Cbr-puf-1.2 repress Cbr-gld-1 by a conserved mechanism. However, Cbr-gld-1 acts to limit, rather than promote, XX spermatogenesis. As with gld-1, no sex determination function for fbf or puf-2 orthologs is observed in gonochoristic Caenorhabditis. These results indicate that PUF family genes were co-opted for sex determination in each hermaphrodite via their long-standing association with gld-1, and that their precise sex-determining roles depend on the species-specific context in which they act. Finally, we document non-redundant roles for Cbr-puf-2 in embryonic and early larval development, the latter role being essential. Thus, recently duplicated PUF paralogs have already acquired distinct functions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Biossíntese de Proteínas , Animais , Caenorhabditis elegans , Evolução Molecular , Feminino , Células Germinativas/citologia , Imuno-Histoquímica/métodos , Masculino , Microscopia de Contraste de Fase/métodos , Modelos Genéticos , Mutação , Fenótipo , Filogenia , Interferência de RNA , Transgenes , Técnicas do Sistema de Duplo-Híbrido
19.
RNA ; 19(11): 1575-82, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24062572

RESUMO

The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5' CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development.


Assuntos
Proteínas Ligadas por GPI/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Xenopus/biossíntese , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro Estocado/genética , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/química , Análise de Sequência de RNA , Proteínas de Xenopus/química , Xenopus laevis/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 34(1): 187-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24233486

RESUMO

OBJECTIVE: Tissue factor pathway inhibitor (TFPI) blocks the initiation of coagulation by inhibiting TF-activated factor VII, activated factor X, and early prothrombinase. Humans produce two 3' splice variants, TFPIα and TFPIß, which are differentially expressed in endothelial cells and platelets and possess distinct structural features affecting their inhibitory function. TFPI also undergoes alternative splicing of exon 2 within its 5' untranslated region. The role of exon 2 splicing in translational regulation of human TFPI isoform expression is investigated. APPROACH AND RESULTS: Exon 2 splicing occurs in TFPIα and TFPIß transcripts. Human tissue mRNA analysis uncovered a wide variability of exon 2 expression. Polysome analysis revealed a repressive effect of exon 2 on TFPIß translation but not on TFPIα. Luciferase reporter assays further exposed strong translational repression of TFPIß (90%) but not TFPIα. Use of a Morpholino to remove exon 2 from TFPI mRNA increased cell surface expression of endogenous TFPIß. Exon 2 also repressed luciferase production (80% to 90%) when paired with the ß-actin 3' untranslated region, suggesting that it is a general translational negative element whose effects are overcome by the TFPIα 3' untranslated region. CONCLUSIONS: Exon 2 is a molecular switch that prevents translation of TFPIß. This is the first demonstration of a 5' untranslated region alternative splicing event that alters translation of isoforms produced via independent 3' splicing events within the same gene. Therefore, it represents a previously unrecognized mechanism for translational control of protein expression. Differential expression of exon 2 denotes a mechanism to provide temporal and tissue-specific regulation of TFPIß-mediated anticoagulant activity.


Assuntos
Regiões 5' não Traduzidas , Processamento Alternativo , Lipoproteínas/biossíntese , Lipoproteínas/genética , RNA Mensageiro/biossíntese , Regiões 3' não Traduzidas , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Regulação para Baixo , Éxons , Regulação da Expressão Gênica , Genes Reporter , Humanos , Polirribossomos/metabolismo , Biossíntese de Proteínas , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa