RESUMO
The contribution of stress protein duplication and deletion events to the evolution of the Aspergilli was studied. We performed a large-scale homology analysis of stress proteins and generated and analysed three stress defence system models based on Saccharomyces cerevisiae, Schizosaccharomyces pombe and Aspergillus nidulans. Although both yeast-based and A. nidulans-based models were suitable to trace evolutionary changes, the A. nidulans-based model performed better in mapping stress protein radiations. The strong Mantel correlation found between the positions of species in the phylogenetic tree on the one hand and either in the A. nidulans-based or S. cerevisiae-based models on the other hand demonstrated that stress protein expansions and reductions contributed significantly to the evolution of the Aspergilli. Interestingly, stress tolerance attributes correlated well with the number of orthologs only for a few stress proteins. Notable examples are Ftr1 iron permease and Fet3 ferro-O2-oxidoreductase, elements of the reductive iron assimilation pathway, in the S. cerevisiae-based model, as well as MpkC, a HogA-like mitogen activated protein kinase in the A. nidulans-based model. In the case of the iron assimilation proteins, the number of orthologs showed a positive correlation with H2O2-induced stress tolerance while the number of MpkC orthologs correlated positively with Congo Red induced cell wall stress, sorbitol induced osmotic stress and H2O2 induced oxidative stress tolerances. For most stress proteins, changes in the number of orthologs did not correlate well with any stress tolerance attributes. As a consequence, stress tolerance patterns of the studied Aspergilli did not correlate with either the sets of stress response proteins in general or with the phylogeny of the species studied. These observations suggest that stress protein duplication and deletion events significantly contributed to the evolution of stress tolerance attributes of Aspergilli. In contrast, there are other processes, which may counterbalance the effects of stress gene duplications or deletions including (i) alterations in the structures of stress proteins leading to changes in their biological activities, (ii) varying biosynthesis of stress proteins, (iii) rewiring stress response regulatory networks or even (iv) acquiring new stress response genes by horizontal gene transfer. All these multilevel changes are indispensable for the successful adaptation of filamentous fungi to altering environmental conditions, especially when these organisms are entering new ecological niches.
RESUMO
We classified the genes encoding carbohydrate-active enzymes (CAZymes) in 17 sequenced genomes representing 16 evolutionarily diverse Aspergillus species. We performed a phylogenetic analysis of the encoding enzymes, along with experimentally characterized CAZymes, to assign molecular function to the Aspergilli CAZyme families and subfamilies. Genome content analysis revealed that the numbers of CAZy genes per CAZy family related to plant biomass degradation follow closely the taxonomic distance between the species. On the other hand, growth analysis showed almost no correlation between the number of CAZyme genes and the efficiency in polysaccharide utilization. The exception is A. clavatus where a reduced number of pectinolytic enzymes can be correlated with poor growth on pectin. To gain detailed information on the enzymes used by Aspergilli to breakdown complex biomass, we conducted exoproteome analysis by mass spectrometry. These results showed that Aspergilli produce many different enzymes mixtures in the presence of sugar beet pulp and wheat bran. Despite the diverse enzyme mixtures produced, species of section Nigri, A. aculeatus, A. nidulans and A. terreus, produce mixtures of enzymes with activities that are capable of digesting all the major polysaccharides in the available substrates, suggesting that they are capable of degrading all the polysaccharides present simultaneously. For the other Aspergilli, typically the enzymes produced are targeted to a subset of polysaccharides present, suggesting that they can digest only a subset of polysaccharides at a given time.