Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 36(7): 949-958, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28250043

RESUMO

Bacterial formate-nitrite transporters (FNTs) regulate the metabolic flow of small, weak mono-acids. Recently, the eukaryotic PfFNT was identified as the malaria parasite's lactate transporter and novel drug target. Despite crystal data, central mechanisms of FNT gating and transport remained unclear. Here, we show elucidation of the FNT transport mechanism by single-step substrate protonation involving an invariant lysine in the periplasmic vestibule. Opposing earlier gating hypotheses and electrophysiology reports, quantification of total uptake by radiolabeled substrate indicates a permanently open conformation of the bacterial formate transporter, FocA, irrespective of the pH Site-directed mutagenesis, heavy water effects, mathematical modeling, and simulations of solvation imply a general, proton motive force-driven FNT transport mechanism: Electrostatic attraction of the acid anion into a hydrophobic vestibule decreases substrate acidity and facilitates protonation by the bulk solvent. We define substrate neutralization by proton transfer for transport via a hydrophobic transport path as a general theme of the Amt/Mep/Rh ammonium and formate-nitrite transporters.


Assuntos
Proteínas de Bactérias/metabolismo , Formiatos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nitritos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Bactérias/genética , Análise Mutacional de DNA , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Modelos Teóricos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Proteínas de Protozoários/genética
2.
PLoS Pathog ; 13(2): e1006172, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28178358

RESUMO

Resistance against all available antimalarial drugs calls for novel compounds that hit unexploited targets in the parasite. Here, we show that the recently discovered Plasmodium falciparum lactate/proton symporter, PfFNT, is a valid druggable target, and describe a new class of fluoroalkyl vinylogous acids that potently block PfFNT and kill cultured parasites. The original compound, MMV007839, is derived from the malaria box collection of potent antimalarials with unknown targets and contains a unique internal prodrug principle that reversibly switches between a lipophilic transport form and a polar, substrate-analogous active form. Resistance selection of cultured P. falciparum parasites with sub-lethal concentrations of MMV007839 produced a single nucleotide exchange in the PfFNT gene; this, and functional characterization of the resulting PfFNT G107S validated PfFNT as a novel antimalarial target. From quantitative structure function relations we established the compound binding mode and the pharmacophore. The pharmacophore largely circumvents the resistance mutation and provides the basis for a medicinal chemistry program that targets lactate and proton transport as a new mode of antimalarial action.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/metabolismo , Transportadores de Ácidos Monocarboxílicos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
3.
FEBS J ; 284(16): 2663-2673, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28544379

RESUMO

Bacterial formate-nitrite transporters (FNT) regulate the metabolic flow of small weak mono-acids derived from anaerobic mixed-acid fermentation, such as formate, and further transport nitrite and hydrosulfide. The eukaryotic Plasmodium falciparumFNT is vital for the malaria parasite by its ability to release the larger l-lactate substrate as the metabolic end product of anaerobic glycolysis in symport with protons preventing cytosolic acidification. However, the molecular basis for substrate discrimination by FNTs has remained unclear. Here, we identified a size-selective FNT substrate filter region around an invariant lysine at the bottom of the periplasmic/extracellular vestibule. The selectivity filter is reminiscent of the aromatic/arginine constriction of aquaporin water and solute channels regarding composition, location in the protein, and the size-selection principle. Bioinformatics support an adaptation of the eukaryotic FNT selectivity filter to accommodate larger physiologically relevant substrates. Mutations that affect the diameter at the filter site predictably modulated substrate selectivity. The shape of the vestibule immediately above the filter region further affects selectivity. This study indicates that eukaryotic FNTs evolved to transport larger mono-acid substrates, especially l-lactic acid as a product of energy metabolism.


Assuntos
Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plasmodium falciparum/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Biologia Computacional , Proteínas de Membrana Transportadoras/genética , Mutação , Nitritos/metabolismo , Plasmodium falciparum/genética , Especificidade por Substrato
4.
Nat Commun ; 6: 6284, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25669138

RESUMO

Maintenance of a high glycolytic flow rate is critical for the rapid growth and virulence of malarial parasites. The parasites release two moles of lactic acid per mole of glucose as the anaerobic end product. However, the molecular identity of the Plasmodium lactate transporter is unknown. Here we show that a member of the microbial formate-nitrite transporter family, PfFNT, acts as a lactate/proton symporter in Plasmodium falciparum. Besides L-lactate, PfFNT transports physiologically relevant D-lactate, as well as pyruvate, acetate and formate, and is inhibited by the antiplasmodial compounds phloretin, furosemide and cinnamate derivatives, but not by p-chloromercuribenzene sulfonate (pCMBS). Our data on PfFNT monocarboxylate transport are consistent with those obtained with living parasites. Moreover, PfFNT is the only transporter of the plasmodial glycolytic pathway for which structure information is available from crystals of homologous proteins, rendering it amenable to further evaluation as a novel antimalarial drug target.


Assuntos
Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Fluorescência , Glicólise/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Humanos , Malária Falciparum/parasitologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Mutação/genética , Parasitos/efeitos dos fármacos , Parasitos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Prótons , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Simportadores/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa