Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Evol Biol ; 19(1): 228, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856717

RESUMO

BACKGROUND: Due to the environmental heterogeneity along elevation gradients, alpine ecosystems are ideal study objects for investigating how ecological variables shape the genetic patterns of natural species. The highest region in the world, the Qinghai-Tibetan Plateau, is a hotspot for the studies of evolutionary processes in plants. Many large rivers spring from the plateau, providing abundant habitats for aquatic and amphibious organisms. In the present study, we examined the genetic diversity of 13 Ranunculus subrigidus populations distributed throughout the plateau in order to elucidate the relative contribution of geographic distance and environmental dissimilarity to the spatial genetic pattern. RESULTS: A relatively low level of genetic diversity within populations was found. No spatial genetic structure was suggested by the analyses of molecular variance, Bayesian clustering analysis and Mantel tests. Partial Mantel tests and multiple matrix regression analysis showed a significant influence of the environment on the genetic divergence of the species. Both climatic and water quality variables contribute to the habitat heterogeneity of R. subrigidus populations. CONCLUSIONS: Our results suggest that historical processes involving long-distance dispersal and local adaptation may account for the genetic patterns of R. subrigidus and current environmental factors play an important role in the genetic differentiation and local adaptation of aquatic plants in alpine landscapes.


Assuntos
Ecossistema , Variação Genética , Ranunculus/genética , Teorema de Bayes , Evolução Biológica , Interação Gene-Ambiente , Repetições de Microssatélites , Análise de Componente Principal , Isolamento Reprodutivo , Tibet
2.
Water Res ; 139: 395-405, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29673938

RESUMO

The aim of the study was to develop predictive models of the ecological status of rivers by using artificial neural networks. The relationships between five macrophyte indices and the combined impact of water pollution as well as hydromorphological degradation were examined. The dataset consisted of hydromorphologically modified rivers representing a wide water quality gradient. Three ecological status indices, namely the Macrophyte Index for Rivers (MIR), the Macrophyte Biological Index for Rivers (IBMR) and the River Macrophyte Nutrient Index (RMNI), were tested. Moreover two diversity indices, species richness (N) and the Simpson index (D) were tested. Physico-chemical parameters reflecting both water quality and hydromorphological status were utilized as explanatory variables for the artificial neural networks. The best modelling quality in terms of high values of coefficients of determination and low values of the normalized root mean square error was obtained for the RMNI and the MIR networks. The networks constructed for IBMR, species richness and the Simpson index showed a lower degree of fit. In all cases, modelling quality improved by adding two hydromorphological indices to the pool of explanatory variables. The significant effect of these indices in the models was confirmed by sensitivity analysis. The research showed that ecological assessment of rivers based on macrophyte metrics does not only reflect the water quality but also the hydromorphological status.


Assuntos
Modelos Teóricos , Redes Neurais de Computação , Rios , Qualidade da Água , Organismos Aquáticos , Ecossistema , Monitoramento Ambiental , Plantas , Poluição da Água
3.
Sci Total Environ ; 541: 1269-1281, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26476066

RESUMO

Ecological assessment of water courses is required by the European Water Framework Directive (WFD). Assessment by means of macrophytes is impeded by insufficient knowledge on the relations between assessment scores and the dynamics of environmental parameters. Data from a long-term observation of macrophyte dynamics over 21 years in two lowland rivers were used for testing the performance of six widely used assessment methods. Six sample sites situated in two lowland streams were selected. Four sites were classified as of moderate habitat quality and two sites as of poor habitat quality in the context of WFD. Assessment methods generally showed a poor performance in recognizing the ecological status of the annual observations. Status was more often over- than underestimated. Performance of methods differed among individual rivers and among river zones. Assessment scores mostly showed a steady decline, even though all sites obviously remained in the same habitat quality class throughout the observation period. Variation of most environmental factors was largely unrelated to assessment scores. Fluctuations of assessment scores were partly related to single natural disturbance events such as high discharge. Increased shading by marginal trees was reflected negatively by most assessment scores. Assessment scores were highly correlated with species richness and total abundance. The best overall performance was shown by the North-Rhine Westphalian (NRW) method. In contrast to single metric methods it can be adapted to individual properties of a reach in a flexible way. Macrophyte assessment based on the pressure-impact framework did not lead to a satisfying result in our case study. Improvement of species assessment scores and inclusion of functional properties such as growth form may help to overcome the present difficulties.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Poluição da Água/estatística & dados numéricos , Ecologia , Plantas , Rios/química
4.
Springerplus ; 3: 702, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26034692

RESUMO

Transformation of natural land cover (LC) into modified LC has become inevitable due to growing human needs. Nevertheless, landscape transformational patterns during reclamation of mine damaged lands remain vague. Our hypothesis was that post-mining landscapes with different ages since dumping become more diverse in LC transformation over time. The aim was to study the impact of landscape reclamation on land cover changes (LCC) in two post-mining landscapes. Land cover maps of 1988, 1991, 1995, 1998, 2000 and 2003 were produced from LANDSAT TM images of Schlabendorf Nord and Schlabendorf Süd and used to survey the changing landscape. Change detection extension was used to identify changes among land cover types (LCTs). Detrended correspondence analyses (DCA) ordination technique (CANOCO) aided study of similarity among LC distribution. Soil pH analysis was carried out to study effect of soil and climate conditions on LCC. The results show that visible patterns of increase and decrease in the LCTs occurred in both landscapes. Given two post-mining landscapes subjected to different ages of reclamation, clear differences in vegetation growth and LCC pattern would occur. At early stages of restoration, LCTs often have unstable conditions and experience more acute transformation depending on the level of land use intensity in space and time. LCCs were mostly due to progressive and reversed succession. Due to variation in post-mining landscape soil conditions, soil treatment during reclamation should be site specific. The comparative analysis of LCCs in Schlabendorf provides a framework for prioritizing land use planning options for sustainable management of post-mining landscapes in temperate ecosystems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa