RESUMO
BACKGROUND: Doege-Potter syndrome is defined as paraneoplastic hypoinsulinemic hypoglycemia associated with a benign or malignant solitary fibrous tumor frequently located in pleural, but also extrapleural sites. Hypoglycemia can be attributed to paraneoplastic secretion of "Big-IGF-II," a precursor of Insulin-like growth factor-II. This prohormone aberrantly binds to and activates insulin receptors, with consecutive initiation of common insulin actions such as inhibition of gluconeogenesis, activation of glycolysis and stimulation of cellular glucose uptake culminating in recurrent tumor-induced hypoglycemic episodes. Complete tumor resection or debulking surgery is considered the most promising treatment for DPS. CASE: Here, we report a rare case of a recurrent Doege-Poter Syndrome with atypical gelatinous tumor lesions of the lung, pleura and pericardial fat tissue in an 87-year-old woman. Although previously described as ineffective, we propose that adjuvant treatment with Octreotide in conjunction with intravenous glucose helped to maintain tolerable blood glucose levels before tumor resection. The somatostatin-analogue Lanreotide was successfully used after tumor debulking surgery (R2-resection) to maintain adequate blood glucose control. CONCLUSION: We conclude that somatostatin-analogues bear the potential of being effective in conjunction with limited surgical approaches for the treatment of hypoglycemia in recurrent or non-totally resectable SFT entities underlying DPS.
Assuntos
Anormalidades Congênitas , Hipoglicemia , Nefropatias/congênito , Rim/anormalidades , Neoplasias , Feminino , Humanos , Idoso de 80 Anos ou mais , Somatostatina , Hipoglicemia/etiologiaRESUMO
Chimeric antigen receptor (CAR) T-cell therapy has dramatically shifted the landscape of treatment especially for Non-Hodgkin-Lymphoma (NHL). This study evaluates the role of fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) in NHL treated with CAR T-cell therapy concerning response assessment and prognosis.We evaluated 34 patients with NHL who received a CAR T-cell therapy between August 2019 and July 2022. All patients underwent a pre-therapeutic FDG-PET/CT (PET-0) 6 days prior and a post-therapeutic FDG-PET/CT (PET-1) 34 days after CAR T-cell therapy. Deauville score (DS) was used for evaluation of response to therapy and compared to a minimum follow-up of 5 months.19/34 (55.9%) patients achieved DS ≤ 3 on PET-1, the remaining 15 (44.1%) patients had DS > 3 on PET-1. 14/19 patients with DS ≤ 3 on PET-1 had no relapsed or refractory (r/r)-disease and were still alive at last follow-up. The other 5 patients had r/r-disease and 4 of these died. Except for two patients who had no r/r-disease, all other patients (13/15) with DS > 3 on PET-1 had r/r-disease and 12 of these subsequently died. Patients with DS ≤ 3 on PET-1 had significantly better progression free survival (PFS; HR: 5.7; p < 0.01) and overall survival (OS; HR: 5.0; p < 0.01) compared to patients with DS > 3 on PET-1. In addition, we demonstrated that patients with DS ≤ 4 on PET-0 tended to have longer PFS (HR: 3.6; p = 0.05).Early FDG-PET/CT using the established DS after CAR T-cell therapy is a powerful tool to evaluate response to therapy.
Assuntos
Fluordesoxiglucose F18 , Imunoterapia Adotiva , Linfoma não Hodgkin , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Linfoma não Hodgkin/diagnóstico por imagem , Linfoma não Hodgkin/terapia , Adulto , Idoso , Resultado do Tratamento , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/uso terapêutico , Estudos Retrospectivos , PrognósticoRESUMO
PURPOSE: Pre-operative assessment of thoracic lymphonodal (LN) involvement in patients with lung cancer (LC) is crucial when choosing the treatment modality. Visual assessment of F-18-FDG-PET/CT (PET/CT) is well established, however, there is still a need for prospective quantitative data to differentiate benign from malignant lesions which would simplify staging and guide the further implementation of computer-aided diagnosis (CAD). METHODS: In this prospective study, 37 patients with confirmed lung cancer (m/f = 24/13; age: 70 [52-83] years) were analyzed. All patients underwent PET/CT and quantitative data (standardized uptake values) were obtained. Histological results were available for 101 thoracic lymph nodes. Quantitative data were matched to determine cut-off values for delineation between benign vs. malignant lymph nodes. Furthermore, a scoring system derived from these cut-off values was established. Statistical analyses were performed through ROC analysis. RESULTS: Quantitative analysis revealed the optimal cut-off values (p < 0.01) for the differentiation between benign and malignant thoracic lymph nodes in patients suffering from lung cancer. The respective areas under the curve (AUC) ranged from 0.86 to 0.94. The highest AUC for a ratio of lymph node to healthy lung tissue was 0.94. The resulting accuracy ranged from 78.2% to 89.1%. A dedicated scoring system led to an AUC of 0.93 with a negative predictive value of 95.4%. CONCLUSION: Quantitative analysis of F-18-FDG-PET/CT data provides reliable results for delineation between benign and malignant thoracic lymph nodes. Thus, quantitative parameters can improve diagnostic accuracy and reliability and can also facilitate the handling of the steadily increasing number of clinical examinations.