Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Pflugers Arch ; 473(12): 1841-1850, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34549327

RESUMO

The bile acid-sensitive ion channel (BASIC) is a member of the Deg/ENaC family of ion channels that is activated by bile acids. Despite the identification of cholangiocytes in the liver and unipolar brush cells in the cerebellum as sites of expression, the physiological function of BASIC in these cell types is not yet understood. Here we used a cholangiocyte cell line, normal rat cholangiocytes (NRCs), which expresses BASIC to study the role of the channel in epithelial transport using Ussing chamber experiments. Apical application of bile acids induced robust and transient increases in transepithelial currents that were carried by Na+ and partly blocked by the BASIC inhibitor diminazene. Genetic ablation of the BASIC gene in NRC using a CRISPR-cas9 approach resulted in a decrease of the bile acid-mediated response that matched the diminazene-sensitive current in NRC WT cells, suggesting that cholangiocytes respond to bile acids with a BASIC-mediated Na+ influx. Taken together, we have identified BASIC as a component of the cholangiocyte transport machinery, which might mediate a bile acid-dependent modification of the bile and thus control bile flux and composition.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/metabolismo , Células Epiteliais/metabolismo , Animais , Bile/metabolismo , Linhagem Celular , Fígado/metabolismo , Ratos , Sódio/metabolismo
2.
BMC Biol ; 18(1): 143, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059680

RESUMO

BACKGROUND: ADP-ribosylation is a ubiquitous post-translational modification that involves both mono- and poly-ADP-ribosylation. ARTD10, also known as PARP10, mediates mono-ADP-ribosylation (MARylation) of substrate proteins. A previous screen identified protein kinase C delta (PKCδ) as a potential ARTD10 substrate, among several other kinases. The voltage-gated K+ channel Kv1.1 constitutes one of the dominant Kv channels in neurons of the central nervous system and the inactivation properties of Kv1.1 are modulated by PKC. In this study, we addressed the role of ARTD10-PKCδ as a regulator of Kv1.1. RESULTS: We found that ARTD10 inhibited PKCδ, which increased Kv1.1 current amplitude and the proportion of the inactivating current component in HeLa cells, indicating that ARTD10 regulates Kv1.1 in living cells. An inhibitor of ARTD10, OUL35, significantly decreased peak amplitude together with the proportion of the inactivating current component of Kv1.1-containing channels in primary hippocampal neurons, demonstrating that the ARTD10-PKCδ signaling cascade regulates native Kv1.1. Moreover, we show that the pharmacological blockade of ARTD10 increases excitability of hippocampal neurons. CONCLUSIONS: Our results, for the first time, suggest that MARylation by ARTD10 controls neuronal excitability.


Assuntos
Canal de Potássio Kv1.1/genética , Poli(ADP-Ribose) Polimerases/genética , Proteína Quinase C-delta/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais , Animais , Células HEK293 , Células HeLa , Humanos , Canal de Potássio Kv1.1/metabolismo , Camundongos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
3.
Pflugers Arch ; 471(2): 329-336, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30353368

RESUMO

Despite the identification of cholangiocytes in the liver and unipolar brush cells in the cerebellum as sites of expression, the physiological function of the bile acid-sensitive ion channel (BASIC) remains unknown. Rat BASIC (rBASIC) and mouse BASIC (mBASIC) share 97% of their amino acid sequence but show strikingly different biophysical properties. rBASIC is inactive at rest while mBASIC is constitutively active, when expressed in Xenopus oocytes. This conundrum rendered the identification of the physiological function even more difficult. In this study, we investigated the electrophysiological and pharmacological properties of BASIC from rat, mouse, and human in Hek293 cells using the patch clamp technique. Surprisingly, in Hek293 cells, rBASIC and mBASIC showed almost completely identical properties. Both are blocked by extracellular Ca2+ and thus are inactive at rest; both are selective for Na+, show similar affinities for extracellular Ca2+, were inhibited by diminazene, and activated by various bile acids. This is in contrast to previous results derived from Xenopus oocytes as expression system and suggests that the cell type is important for shaping the biophysical properties of BASIC. Furthermore, we compared hBASIC with rBASIC and mBASIC and observed similar properties between these channels with one exception: the bile acid sensitivity profile of hBASIC is different from rBASIC and mBASIC; hBASIC is more sensitive to bile acids which are abundant in human bile but not in rodent bile. Taken together, these results suggest similar physiological roles for BASIC in different species.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Ácidos e Sais Biliares/metabolismo , Aminoácidos/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos/fisiologia , Células HEK293 , Humanos , Camundongos , Oócitos/metabolismo , Técnicas de Patch-Clamp/métodos , Ratos , Sódio/metabolismo , Xenopus laevis/metabolismo
4.
Purinergic Signal ; 15(2): 213-221, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31098843

RESUMO

Extracellular adenosine triphosphate (ATP) regulates a broad variety of physiological functions in a number of tissues partly via ionotropic P2X receptors. Therefore, P2X receptors are promising targets for the development of therapeutically active molecules. Bile acids are cholesterol-derived amphiphilic molecules; their primary function is the facilitation of efficient nutrient fat digestion. However, bile acids have also been shown to serve as signaling molecules and as modulators of different membrane proteins and receptors including ion channels. In addition, some P2X receptors are sensitive to structurally related steroid hormones. In this study, we systematically analyzed whether rat P2X receptors are affected by micromolar concentrations of different bile acids. The taurine-conjugated bile acids TLCA, THDCA, and TCDCA potently inhibited P2X2, whereas other P2X receptors were only mildly affected. Furthermore, stoichiometry and species origin of the P2X receptors affected the modulation by bile acids: in comparison to rat P2X2, the heteromeric P2X2/3 receptor was less potently modulated and the human P2X2 receptor was potentiated by TLCA. In summary, bile acids are a new class of P2X receptor modulators, which might be of physiological relevance.


Assuntos
Ácidos e Sais Biliares/farmacologia , Receptores Purinérgicos P2X2/efeitos dos fármacos , Receptores Purinérgicos P2X2/metabolismo , Animais , Humanos , Ratos , Xenopus laevis
5.
Biophys J ; 114(6): 1321-1335, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590590

RESUMO

The bile acid-sensitive ion channel is activated by amphiphilic substances such as bile acids or artificial detergents via membrane alterations; however, the mechanism of membrane sensitivity of the bile acid-sensitive ion channel is not known. It has also not been systematically investigated whether other members of the degenerin/epithelial Na+ channel (DEG/ENaC) gene family are affected by amphiphilic compounds. Here, we show that DEG/ENaCs ASIC1a, ASIC3, ENaC, and the purinergic receptor P2X2 are modulated by a large number of different, structurally unrelated amphiphilic substances, namely the detergents N-lauroylsarcosine, Triton X-100, and ß-octylglucoside; the fenamate flufenamic acid; the antipsychotic drug chlorpromazine; the natural phenol resveratrol; the chili pepper compound capsaicin; the loop diuretic furosemide; and the antiarrythmic agent verapamil. We determined the modification of membrane properties using large-angle x-ray diffraction experiments on model lipid bilayers, revealing that the amphiphilic compounds are positioned in a characteristic fashion either in the lipid tail group region or in the lipid head group region, demonstrating that they perturbed the membrane structure. Collectively, our results show that DEG/ENaCs and structurally related P2X receptors are modulated by diverse amphiphilic molecules. Furthermore, they suggest alterations of membrane properties by amphiphilic compounds as a mechanism contributing to modulation.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Canais de Sódio Degenerina/metabolismo , Canais Epiteliais de Sódio/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Animais , Ratos
6.
J Biol Chem ; 291(47): 24551-24565, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27679529

RESUMO

The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Animais , Membrana Celular/química , Membrana Celular/genética , Citosol/química , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos , Simportadores/química , Simportadores/genética , Xenopus laevis
8.
Pflugers Arch ; 466(9): 1725-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24292109

RESUMO

The epithelial Na(+) channel (ENaC) is a key regulator of Na(+) absorption in various epithelia including the distal nephron and the distal colon. ENaC is a constitutively active channel, but its activity is modulated by a number of mechanisms. These include proteolytic activation, ubiquitination and cell surface expression, phosphorylation, intracellular Na(+) concentration, and shear stress. ENaC is related to the bile acid-sensitive ion channel (BASIC), a channel that is expressed in the epithelial cells of bile ducts. BASIC is activated by millimolar concentrations of extracellular bile acids. Bile acids are synthesized by the liver and secreted into the duodenum to aid lipolysis. A large fraction of the secreted bile acids is absorbed by the ileum and recirculated into the liver, but a small fraction passes the colon and is excreted. Bile acids can influence the ion transport processes in the intestinal tract including the colon. In this study, we show that various bile acids present in rat bile potently and reversibly increase the activity of rat ENaC expressed in Xenopus oocytes, suggesting that bile acids are natural modulators of ENaC activity.


Assuntos
Ácidos e Sais Biliares/metabolismo , Canais Epiteliais de Sódio/metabolismo , Animais , Bile/química , Bile/metabolismo , Transporte de Íons/fisiologia , Técnicas de Patch-Clamp , Ratos
9.
Pflugers Arch ; 466(2): 253-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23842738

RESUMO

The human bile acid-sensitive ion channel (hBASIC) is a cation channel of the degenerin/epithelial Na(+) channel gene family that is expressed in the intestinal tract and can be activated by bile acids. Here, we show that in addition to its sensitivity for bile acids, hBASIC shares further key features with its rat ortholog: it is blocked by extracellular divalent cations, is inhibited by micromolar concentrations of the diarylamidine diminazene, and activated by millimolar concentrations of flufenamic acid. Furthermore, we demonstrate that two major bile acids present in human bile, chenodeoxycholic acid and deoxycholic acid, activate hBASIC in a synergistic manner. In addition, we determined the single-channel properties of hBASIC in outside-out patch clamp recordings, revealing a single-channel conductance of about 11 pS and a high Na(+) selectivity. Deoxycholic acid activates hBASIC in patch clamp recordings mainly by reducing the single-channel closed time. In summary, we provide a thorough functional characterization of hBASIC.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Ácidos e Sais Biliares/farmacologia , Canais de Sódio Degenerina/fisiologia , Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Cátions Bivalentes/farmacologia , Canais de Sódio Degenerina/efeitos dos fármacos , Diminazena/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/fisiologia , Ácido Flufenâmico/farmacologia , Humanos , Ativação do Canal Iônico/fisiologia , Técnicas de Patch-Clamp
10.
FASEB J ; 26(10): 4122-30, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22735174

RESUMO

Brain liver intestine Na+ channel (BLINaC) is an ion channel of the DEG/ENaC gene family of unknown function. BLINaC from rats (rBLINaC) and humans (INaC) is inactive at rest, and its mode of activation has remained unclear. Here, we show that the BLINaC protein localizes to cholangiocytes, epithelial cells that line bile ducts. Moreover, we provide evidence that rBLINaC and INaC are robustly activated by bile acids, in particular chenodeoxycholic acid and hyodeoxycholic acid (EC50=2.1±0.05 mM). Thus, BLINaC appears to be an epithelial cation channel of bile ducts sensitive to physiological concentrations of bile acids. BLINaC is related to acid-sensing ion channels (ASICs) and to the epithelial Na+ channel (ENaC) and shares ligand activation with ASICs and epithelial localization with ENaC. Therefore, based on the close homology of BLINaC to ASICs and its activation by bile acids, we propose to rename BLINaC bile acid-sensitive ion channel (BASIC).


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Animais , Bicarbonatos/metabolismo , Ductos Biliares/citologia , Western Blotting , Ácido Quenodesoxicólico/metabolismo , Cloretos/metabolismo , Ácido Desoxicólico/metabolismo , Eletrofisiologia , Células Epiteliais/metabolismo , Ratos
11.
Mol Pharmacol ; 80(5): 911-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21828194

RESUMO

The brain liver intestine Na(+) channel (BLINaC) is a member of the degenerin/epithelial Na(+) channel gene family of unknown function. Elucidation of the physiological function of BLINaC would benefit greatly from pharmacological tools that specifically affect BLINaC activity. Guided by the close molecular relation of BLINaC to acid-sensing ion channels, we discovered in this study that rat BLINaC (rBLINaC) and mouse BLINaC are inhibited by micromolar concentrations of diarylamidines and nafamostat, similar to acid-sensing ion channels. Inhibition was voltage-dependent, suggesting pore block as the mechanism of inhibition. Furthermore, we identified the fenamate flufenamic acid and related compounds as agonists of rBLINaC. Application of millimolar concentrations of flufenamic acid to rBLINaC induced a robust, Na(+)-selective current, which was blocked partially by amiloride. The identification of an artificial agonist of rBLINaC supports the hypothesis that rBLINaC is opened by an unknown physiological ligand. Inhibition by diarylamidines and activation by fenamates define a unique pharmacological profile for BLINaC, which will be useful to unravel the physiological function of this ion channel.


Assuntos
Encéfalo/metabolismo , Fenamatos/farmacologia , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Amilorida/farmacologia , Animais , Benzamidinas , Diminazena/farmacologia , Relação Dose-Resposta a Droga , Guanidinas/farmacologia , Ratos , Xenopus laevis
12.
J Biol Chem ; 285(40): 30404-10, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20656685

RESUMO

Ion channels of the degenerin/epithelial Na(+) channel gene family are Na(+) channels that are blocked by the diuretic amiloride and are implicated in several human diseases. The brain liver intestine Na(+) channel (BLINaC) is an ion channel of the degenerin/epithelial Na(+) channel gene family with unknown function. In rodents, it is expressed mainly in brain, liver, and intestine, and to a lesser extent in kidney and lung. Expression of rat BLINaC (rBLINaC) in Xenopus oocytes leads to small unselective currents that are only weakly sensitive to amiloride. Here, we show that rBLINaC is inhibited by micromolar concentrations of extracellular Ca(2+). Removal of Ca(2+) leads to robust currents and increases Na(+) selectivity of the ion pore. Strikingly, the species ortholog from mouse (mBLINaC) has an almost 250-fold lower Ca(2+) affinity than rBLINaC, rendering mBLINaC constitutively active at physiological concentrations of extracellular Ca(2+). In addition, mBLINaC is more selective for Na(+) and has a 700-fold higher amiloride affinity than rBLINaC. We show that a single amino acid in the extracellular domain determines these profound species differences. Collectively, our results suggest that rBLINaC is opened by an unknown ligand whereas mBLINaC is a constitutively open epithelial Na(+) channel.


Assuntos
Cálcio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Amilorida/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/genética , Especificidade da Espécie
13.
Biomolecules ; 11(4)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924681

RESUMO

Acid-sensing ion channels (ASICs) are ionotropic receptors that are directly activated by protons. Although protons have been shown to act as a neurotransmitter and to activate ASICs during synaptic transmission, it remains a possibility that other ligands directly activate ASICs as well. Neuropeptides are attractive candidates for alternative agonists of ASICs, because related ionotropic receptors are directly activated by neuropeptides and because diverse neuropeptides modulate ASICs. Recently, it has been reported that the neuropeptide nocistatin directly activates ASICs, including ASIC1a. Here we show that nocistatin does not directly activate ASIC1a expressed in Xenopus oocytes or CHO cells. Moreover, we show that nocistatin acidifies the bath solution to an extent that can fully explain the previously reported activation by this highly acidic peptide. In summary, we conclude that nocistatin only indirectly activates ASIC1a via acidification of the bath solution.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Peptídeos Opioides/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Ativação do Canal Iônico , Ligação Proteica , Ratos , Xenopus laevis
14.
Biochem J ; 405(1): 147-55, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17381423

RESUMO

The human ENaC (epithelial sodium channel), a complex of three subunits, provides the rate-limiting step for sodium uptake in the distal nephron, and therefore plays a key role in salt homoeostasis and in regulating blood pressure. The number of active sodium channel complexes present at the plasma membrane appears to be tightly controlled. In Liddle's syndrome, a form of hypertension caused by an increase in the number of active sodium channels at the cell membrane, the betaENaC or gammaENaC subunit gene contains a mutation that disrupts the binding site for the Nedd4 (neuronal precursor cell expressed developmentally down-regulated gene 4) family of ubiquitin-protein ligases. Therefore ubiquitination of channel subunits may be involved in altering cell surface ENaC. Here, we provide evidence that the ENaC subunits located at the cell surface are modified with multiple mono-ubiquitins (multi-ubiquitination) and that Nedd4-2 modulates this ubiquitination. We confirm that ENaC is associated with the mu2 subunit of the AP-2 (adaptor protein 2) clathrin adaptor. Since mono- or multi-ubiquitination of other membrane proteins is a signal for their internalization by clathrin-mediated endocytosis and subsequent trafficking, our results support a model whereby ubiquitin and clathrin adaptor binding sites act in concert to remove ENaC from the cell surface.


Assuntos
Membrana Celular/metabolismo , Canais Epiteliais de Sódio/metabolismo , Subunidades Proteicas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Animais , Células COS , Fracionamento Celular , Chlorocebus aethiops , Endocitose/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Inibidores Enzimáticos/metabolismo , Canais Epiteliais de Sódio/genética , Homeostase , Humanos , Lisina/metabolismo , Lisossomos/metabolismo , Modelos Moleculares , Ubiquitina-Proteína Ligases Nedd4 , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/genética , Sódio/metabolismo
15.
Sci Rep ; 8(1): 18000, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30573735

RESUMO

Acid-sensing ion channels (ASICs) belong to the DEG/ENaC gene family. While ASIC1a, ASIC1b and ASIC3 are activated by extracellular protons, ASIC4 and the closely related bile acid-sensitive ion channel (BASIC or ASIC5) are orphan receptors. Neuropeptides are important modulators of ASICs. Moreover, related DEG/ENaCs are directly activated by neuropeptides, rendering neuropeptides interesting ligands of ASICs. Here, we performed an unbiased screen of 109 short neuropeptides (<20 amino acids) on five homomeric ASICs: ASIC1a, ASIC1b, ASIC3, ASIC4 and BASIC. This screen revealed no direct agonist of any ASIC but three modulators. First, dynorphin A as a modulator of ASIC1a, which increased currents of partially desensitized channels; second, YFMRFamide as a modulator of ASIC1b and ASIC3, which decreased currents of ASIC1b and slowed desensitization of ASIC1b and ASIC3; and, third, endomorphin-1 as a modulator of ASIC3, which also slowed desensitization. With the exception of YFMRFamide, which, however, is not a mammalian neuropeptide, we identified no new modulator of ASICs. In summary, our screen confirmed some known peptide modulators of ASICs but identified no new peptide ligands of ASICs, suggesting that most short peptides acting as ligands of ASICs are already known.


Assuntos
Canais Iônicos Sensíveis a Ácido/efeitos dos fármacos , Dinorfinas/farmacologia , Neuropeptídeos/farmacologia , Oligopeptídeos/farmacologia , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Neuropeptídeos/química , Neuropeptídeos/isolamento & purificação , Neuropeptídeos/metabolismo , Agonistas de Canais de Sódio/isolamento & purificação , Agonistas de Canais de Sódio/farmacologia , Xenopus laevis
16.
Neuropharmacology ; 135: 496-505, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29627444

RESUMO

Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by extracellular acidification. Inhibiting ASICs is neuroprotective in mouse models of ischemic stroke. As inhalational anesthetics interact with many ion channels and as some of them have neuroprotective effects, we hypothesized that inhalational anesthetics modulate ASICs. We expressed different homo- and heteromeric ASICs heterologously in Xenopus oocytes. We co-applied with acidic pH the halogenated inhalational anesthetics sevoflurane, desflurane, and isoflurane and the noble gases xenon and argon at concentrations that are roughly equivalent to their minimal alveolar concentrations and analyzed their effect on current kinetics and amplitude. Sevoflurane, desflurane, and isoflurane as well as xenon and argon accelerated by a factor of ∼1.5 channel desensitization of the main ASICs of the central nervous system: homomeric ASIC1a and heteromeric ASIC1a/2a and ASIC1a/2b. Moreover, they decreased current amplitudes by ∼25%. For example, isoflurane accelerated desensitization of homomeric ASIC1a from 1.0 ±â€¯0.4 s (mean ±â€¯SD) to 0.6 ±â€¯0.2 s (n = 12; p = 0.0003) and decreased current amplitudes from 12.1 ±â€¯7.5 µA to 9.3 ±â€¯5.6 µA (n = 12; p = 0.0009). While inhalational anesthetics had similar effects on homomeric ASIC3, desensitization of ASIC1b was only accelerated by halogenated anesthetics but not noble gases; desensitization of homomeric ASIC2a was not modulated. In summary, we found a significant modulation of ASICs by different inhalational anesthetics. We conclude that ASICs should be considered as relevant targets of inhalation anesthetics.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Anestésicos Inalatórios/farmacologia , Moduladores de Transporte de Membrana/farmacologia , Animais , Relação Dose-Resposta a Droga , Potenciais da Membrana/efeitos dos fármacos , Oócitos , Técnicas de Patch-Clamp , Fatores de Tempo , Xenopus laevis
17.
Cell Death Differ ; 24(10): 1655-1671, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28622300

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by the selective degeneration of motor neurons (MNs) and their target muscles. Misfolded proteins which often form intracellular aggregates are a pathological hallmark of ALS. Disruption of the functional interplay between protein degradation (ubiquitin proteasome system and autophagy) and RNA-binding protein homeostasis has recently been suggested as an integrated model that merges several ALS-associated proteins into a common pathophysiological pathway. The E102Q mutation in one such candidate gene, the endoplasmic reticulum (ER) chaperone Sigma receptor-1 (SigR1), has been reported to cause juvenile ALS. Although loss of SigR1 protein contributes to neurodegeneration in several ways, the molecular mechanisms underlying E102Q-SigR1-mediated neurodegeneration are still unclear. In the present study, we showed that the E102Q-SigR1 protein rapidly aggregates and accumulates in the ER and associated compartments in transfected cells, leading to structural alterations of the ER, nuclear envelope and mitochondria and to subsequent defects in proteasomal degradation and calcium homeostasis. ER defects and proteotoxic stress generated by E102Q-SigR1 aggregates further induce autophagy impairment, accumulation of stress granules and cytoplasmic aggregation of the ALS-linked RNA-binding proteins (RBPs) matrin-3, FUS, and TDP-43. Similar ultrastructural abnormalities as well as altered protein degradation and misregulated RBP homeostasis were observed in primary lymphoblastoid cells (PLCs) derived from E102Q-SigR1 fALS patients. Consistent with these findings, lumbar α-MNs of both sALS as well as fALS patients showed cytoplasmic matrin-3 aggregates which were not co-localized with pTDP-43 aggregates. Taken together, our results support the notion that E102Q-SigR1-mediated ALS pathogenesis comprises a synergistic mechanism of both toxic gain and loss of function involving a vicious circle of altered ER function, impaired protein homeostasis and defective RBPs.


Assuntos
Esclerose Lateral Amiotrófica/genética , Estresse do Retículo Endoplasmático/genética , Homeostase/genética , Mutação/genética , Proteínas de Ligação a RNA/metabolismo , Receptores sigma/genética , Animais , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Neurônios Motores/metabolismo , RNA/metabolismo , Receptor Sigma-1
18.
Channels (Austin) ; 8(1): 29-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24365967

RESUMO

The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na(+) channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators.


Assuntos
Canais Iônicos Sensíveis a Ácido/fisiologia , Ácidos e Sais Biliares/fisiologia , Canais Epiteliais de Sódio/fisiologia , Animais , Clonagem Molecular , Humanos
19.
PLoS One ; 9(10): e111549, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360526

RESUMO

The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Ácidos e Sais Biliares/farmacologia , Membrana Celular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos Sensíveis a Ácido/química , Animais , Membrana Celular/efeitos dos fármacos , Clorpromazina/farmacologia , Colesterol/farmacologia , Gadolínio/farmacologia , Camundongos , Picratos/farmacologia , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade , Ácido Ursodesoxicólico/farmacologia , Xenopus laevis
20.
Channels (Austin) ; 7(1): 38-42, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23064163

RESUMO

Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA.


Assuntos
Canais Iônicos/metabolismo , Ratos/metabolismo , Ácido Ursodesoxicólico/metabolismo , Animais , Cálcio/metabolismo , Canais Iônicos/genética , Magnésio/metabolismo , Ratos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa