Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Chemistry ; 26(62): 14221-14228, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32452575

RESUMO

Introducing solubilizing α-branched alkyl chains on a poly(diketopyrrolopyrrole-alt-terthiophene) results in a dramatic change of the structural, optical, and electronic properties compared to the isomeric polymer carrying ß-branched alkyl side chains. When branched at the α-position the alkyl substituent creates a steric hindrance that reduces the tendency of the polymer to π-π stack and endows the material with a much higher solubility in common organic solvents. The wider π-π stacking and reduced tendency to crystallize, evidenced from grazing-incidence wide-angle X-ray scattering, result in a wider optical band gap in the solid state. In solar cells with a fullerene acceptor, the α-branched isomer affords a higher open-circuit voltage, but an overall lower power conversion efficiency as a result of a too well-mixed nanomorphology. Due its reduced π-π stacking, the α-branched isomer fluoresces and affords near-infrared light-emitting diodes emitting at 820 nm.

2.
Angew Chem Int Ed Engl ; 59(2): 846-852, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31709705

RESUMO

It remains a challenge to precisely tailor the morphology of polymer monolayers to control charge transport. Herein, the effect of the dissolution temperature (Tdis ) is investigated as a powerful strategy for morphology control. Low Tdis values cause extended polymer aggregation in solution and induce larger nanofibrils in a monolayer network with more pronounced π-π stacking. The field-effect mobility of the corresponding monolayer transistors is significantly enhanced by a factor of four compared to devices obtained from high Tdis with a value approaching 1 cm2 V-1 s-1 . Besides that, the solution kinetics reveal a higher growth rate of aggregates at low Tdis , and filtration experiments further confirm that the dependence of the fibril width in monolayers on Tdis is consistent with the aggregate size in solution. The generalizability of the Tdis effect on polymer aggregation is demonstrated using three other conjugated polymer systems. These results open new avenues for the precise control of polymer aggregation for high-mobility monolayer transistors.

3.
Macromol Rapid Commun ; 39(5)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29251388

RESUMO

The efficient synthesis of a new solution-processable n-type conjugated polymer network (PNT1) is reported through palladium-catalyzed Stille cross-coupling reaction conditions following the A3 + B2 synthetic approach. A benzo[1,2-b:3,4-b':5,6-b″]trithiophene derivative is used as the A3 knot and an alkyl functionalized naphthalenediimide is utilized as the B2 linker. The thermal, optical, and electrochemical properties are examined in detail, showing high thermal stability, absorbance in the visible part of the solar spectrum, and reversible reduction characteristics similar to those of the fullerene derivative [6,6]-phenyl-C71 -butyric acid methyl ester (PC71 BM). PNT1 is employed as the electron acceptor in solution-processed bulk heterojunction organic solar cells, demonstrating the potential of this new type of materials for optoelectronic applications.


Assuntos
Fontes de Energia Elétrica , Luz , Polímeros/química , Soluções/química , Imidas/química , Microscopia de Força Atômica , Modelos Químicos , Estrutura Molecular , Naftalenos/química , Polímeros/síntese química , Energia Solar , Espectrofotometria , Temperatura , Tiofenos/química
4.
Acc Chem Res ; 49(1): 78-85, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26693798

RESUMO

Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with fullerenes via solution processing. The width of these fibers and the photon energy loss, defined as the energy difference between optical band gap and open-circuit voltage, together govern to a large extent the quantum efficiency for charge generation in these blends and thereby the power conversion efficiency of the photovoltaic devices. Lowering the photon energy loss and maintaining a high quantum yield for charge generation is identified as a major pathway to enhance the performance of organic solar cells. This can be achieved by controlling the structural purity of the materials and further control over morphology formation. We hope that this Account contributes to improved design strategies of DPP polymers that are required to realize new breakthroughs in organic solar cell performance in the future.

5.
Angew Chem Int Ed Engl ; 56(1): 148-152, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27891720

RESUMO

Four hexachlorosubphthalocyanines SubPcCl6 -X bearing different axial substituents (X) have been synthesized for use as novel electron acceptors in solution-processed bulk-heterojunction organic solar cells. Subphthalocyanines are aromatic chromophoric molecules with cone-shaped structure, good solution processability, intense optical absorption in the visible spectral region, appropriate electron mobilities, and tunable energy levels. Solar cells with subphthalocyanines as the electron acceptor and PTB7-Th as the electron donor exhibit a power conversion efficiency up to 4 % and an external quantum efficiency approaching 60 % due to significant contributions from both the electron donor and the electron acceptor to the photocurrent, indicating a promising prospect of non-fullerene acceptors based on subphthalocyanines and structurally related systems.

6.
J Am Chem Soc ; 138(31): 10026-31, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27452683

RESUMO

In organic solar cells, photoexcitation of the donor or acceptor phase can result in different efficiencies for charge generation. We investigate this difference for four different 2-pyridyl diketopyrrolopyrrole (DPP) polymer-fullerene solar cells. By comparing the external quantum efficiency spectra of the polymer solar cells fabricated with either [60]PCBM or [70]PCBM fullerene derivatives as acceptor, the efficiency of charge generation via donor excitation and acceptor excitation can both be quantified. Surprisingly, we find that to make charge transfer efficient, the offset in energy between the HOMO levels of donor and acceptor that govern charge transfer after excitation of the acceptor must be larger by ∼0.3 eV than the offset between the corresponding two LUMO levels when the donor is excited. As a consequence, the driving force required for efficient charge generation is significantly higher for excitation of the acceptor than for excitation of the donor. By comparing charge generation for a total of 16 different DPP polymers, we confirm that the minimal driving force, expressed as the photon energy loss, differs by about 0.3 eV for exciting the donor and exciting the acceptor. Marcus theory may explain the dichotomous role of exciting the donor or the acceptor on charge generation in these solar cells.

7.
J Am Chem Soc ; 138(34): 10782-5, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27518841

RESUMO

Using benzo[1,2-b:4,5-b']dithiophene and two matched 5,6-difluorobenzo[2,1,3]thiadiazole-based monomers, we demonstrate that random copolymerization of two electron deficient monomers, alternating with one electron rich monomer, forms a successful approach to synthesize state-of-the-art semiconducting copolymers for organic solar cells. Over a range of compositions, these random copolymers provide impressive power conversion efficiencies (PCEs) of about 8.0%, higher than those of their binary parent polymers, and with little batch-to-batch variation. A PCE over 8% could also be achieved when the active layer was deposited from nonhalogenated solvents at room temperature.

8.
J Am Chem Soc ; 137(6): 2231-4, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25658936

RESUMO

Diketopyrrolopyrrole-based conjugated polymers bridged with thiazole units and different donors have been designed for polymer solar cells. Quantum efficiencies above 50% have been achieved with energy loss between optical band gap and open-circuit voltage below 0.6 eV.

9.
J Am Chem Soc ; 137(36): 11783-94, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26306585

RESUMO

The photoactive layer of polymer solar cells is commonly processed from a four-component solution, containing a semiconducting polymer and a fullerene derivative dissolved in a solvent-cosolvent mixture. The nanoscale dimensions of the polymer-fullerene morphology that is formed upon drying determines the solar cell performance, but the fundamental processes that govern the size of the phase-separated polymer and fullerene domains are poorly understood. Here, we investigate morphology formation of an alternating copolymer of diketopyrrolopyrrole and a thiophene-phenyl-thiophene oligomer (PDPPTPT) with relatively long 2-decyltetradecyl (DT) side chains blended with [6,6]-phenyl-C71-butyric acid methyl ester. During solvent evaporation the polymer crystallizes into a fibrous network. The typical width of these fibers is analyzed by quantification of transmission electron microscopic images, and is mainly determined by the solubility of the polymer in the cosolvent and the molecular weight of the polymer. A higher molecular weight corresponds to a lower solubility and film processing results in a smaller fiber width. Surprisingly, the fiber width is not related to the drying rate or the amount of cosolvent. We have made solar cells with fiber widths ranging from 28 to 68 nm and found an inverse relation between fiber width and photocurrent. Finally, by mixing two cosolvents, we develop a ternary solvent system to tune the fiber width. We propose a model based on nucleation-and-growth which can explain these measurements. Our results show that the width of the semicrystalline polymer fibers is not the result of a frozen dynamical state, but determined by the nucleation induced by the polymer solubility.

10.
J Am Chem Soc ; 136(34): 12130-6, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25101518

RESUMO

Lowering the optical bandgap of conjugated polymers while maintaining a high efficiency for photoinduced charge transfer to suitable electron acceptors such as fullerene has remained a formidable challenge in the area of organic photovoltaics. Here we present the synthesis and application of a series of ultra-small-bandgap donor-acceptor polymers composed of diketopyrrolopyrrole as acceptor and pyrrole-based groups as strong donors. The HOMO energy levels of the polymers can be progressively increased by increasing the donor strength while the LUMO level remains similar, resulting in optical bandgaps between 1.34 and 1.13 eV. Solar cells based on these polymers blended with fullerene derivatives show a high photoresponse in the near-infrared (NIR) and good photovoltaic characteristics, with power conversion efficiencies of 2.9-5.3%. The photoresponse reaches up to 50% external quantum efficiency at 1000 nm and extends to 1200 nm. With the use of a retro-reflective foil to optimize light absorption, high photocurrents up to 23.0 mA cm(-2) are achieved under standard solar illumination conditions. These ultra-small-bandgap polymers are excellent candidates for use in multi-junction applications and NIR organic photodetectors.

11.
J Am Chem Soc ; 136(31): 11128-33, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25029494

RESUMO

We study the occurrence and effect of intrachain homocoupling defects in alternating push-pull semiconducting PDPPTPT polymers based on dithienyl-diketopyrrolopyrrole (TDPPT) and phenylene (P) synthesized via a palladium-catalyzed cross-coupling polymerization. Homocoupled TDPPT-TDPPT segments are readily identified by the presence of a low-energy shoulder in the UV/vis/NIR absorption spectrum. Remarkably, the signatures of these defects are found in many diketopyrrolopyrrole (DPP)-based copolymers reported in the literature. The defects cause a reduction of the band gap, a higher highest occupied molecular orbital (HOMO) level, a lower lowest unoccupied molecular orbital (LUMO) level, and a localization of these molecular orbitals. By synthesizing copolymers with a predefined defect concentration, we demonstrate that their presence reduces the short-circuit current and open-circuit voltage of solar cells based on blends of PDPPTPT with [70]PCBM. In virtually defect-free PDPPTPT, the power conversion efficiency is as high as 7.5%, compared to 4.5-5.6% for polymers containing 20% to 5% defects.

12.
ACS Mater Lett ; 6(1): 267-274, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178980

RESUMO

Crystallization of low-dimensional perovskites is a complex process that leads to multidimensional films comprising two-dimensional (2D), quasi-2D, and three-dimensional (3D) phases. Most quasi-2D perovskite films possess a regular gradient with 2D phases located at the bottom of the film and 3D phases at the top. Recently, multiple studies have reported reverse-graded perovskite films, where the location of the 2D and 3D structures is inverted. The underlying reasons for such a peculiar phase distribution are unclear. While crystallization of regular-graded quasi-2D perovskites has been described as starting with 3D phases from the liquid-air interface, the film formation of reverse-graded films has not been investigated yet. Here, we examine the impact of the alkyl chain length on the formation of regular- and reverse-graded perovskites using n-alkylammonium ions. We find that long alkyl chains reverse the phase distribution gradient. By combining photoluminescence spectroscopy with in situ optical absorption measurements, we demonstrate that crystallization starts at the liquid-N2 interface, though as 3D phases for short-chain n-alkylammonium ions and as quasi-2D phases for long chains. We link this behavior to enhanced van der Waals interactions between long-chain n-alkylammonium ions in polar solvents and their tendency to accumulate at the liquid-N2 interface, creating a concentration gradient along the film thickness.

13.
ACS Appl Energy Mater ; 7(14): 5869-5878, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39055068

RESUMO

In p-i-n perovskite solar cells optical excitation of defect states at the interface between the perovskite and fullerene electron transport layer (ETL) creates a photocurrent responsible for a distinct sub-bandgap external quantum efficiency (EQE). The precise nature of these signals and their impact on cell performance are largely unknown. Here, the effect of n-doping the fullerene on the EQE spectra is studied. The n-doped fullerene is either deposited from solution or by coevaporation. The latter method is used to create undoped-doped fullerene bilayers and investigate the effect of the proximity of the doped region on the EQE spectra. The intensity of the sub-bandgap EQE increases when the ETL is n-doped and also when the device is biased with green light. Using these results, the sub-bandgap EQE signal is attributed to originate from electron trap states in the perovskite with an energy below the conduction band that are filled by excitation with low-energy photons. The trapped electrons give rise to photocurrent when they are collected at a nearby electrode. The enhanced sub-bandgap EQE observed when the ETL is n-doped or bias light is applied, is related to a higher probability to extract trapped electrons under these conditions.

14.
Nat Commun ; 15(1): 1276, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341428

RESUMO

The efficiency of perovskite solar cells is affected by open-circuit voltage losses due to radiative and non-radiative charge recombination. When estimated using sensitive photocurrent measurements that cover the above- and sub-bandgap regions, the radiative open-circuit voltage is often unphysically low. Here we report sensitive photocurrent and electroluminescence spectroscopy to probe radiative recombination at sub-bandgap defects in wide-bandgap mixed-halide lead perovskite solar cells. The radiative ideality factor associated with the optical transitions increases from 1, above and near the bandgap edge, to ~2 at mid-bandgap. Such photon energy-dependent ideality factor corresponds to a many-diode model. The radiative open-circuit voltage limit derived from this many-diode model enables differentiating between radiative and non-radiative voltage losses. The latter are deconvoluted into contributions from the bulk and interfaces via determining the quasi-Fermi level splitting. The experiments show that while sub-bandgap defects do not contribute to radiative voltage loss, they do affect non-radiative voltage losses.

15.
Nanophotonics ; 13(14): 2531-2540, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836103

RESUMO

The short exciton diffusion length in organic semiconductors results in a strong dependence of the conversion efficiency of organic photovoltaic (OPV) cells on the morphology of the donor-acceptor bulk-heterojunction blend. Strong light-matter coupling provides a way to circumvent this dependence by combining the favorable properties of light and matter via the formation of hybrid exciton-polaritons. By strongly coupling excitons in P3HT-C60 OPV cells to Fabry-Perot optical cavity modes, exciton-polaritons are formed with increased propagation lengths. We exploit these exciton-polaritons to enhance the internal quantum efficiency of the cells, determined from the external quantum efficiency and the absorptance. Additionally, we find a consistent decrease in the Urbach energy for the strongly coupled cells, which indicates the reduction of energetic disorder due to the delocalization of exciton-polaritons in the optical cavity.

16.
J Am Chem Soc ; 135(15): 5529-32, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23544881

RESUMO

We demonstrate tandem and triple-junction polymer solar cells with power conversion efficiencies of 8.9% and 9.6% that use a newly designed, high molecular weight, small band gap semiconducting polymer and a matching wide band gap polymer.

17.
J Am Chem Soc ; 135(50): 18942-8, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24279503

RESUMO

For a series of six diketopyrrolopyrrole (DPP)-based conjugated polymers, we establish a direct correlation between their external quantum efficiencies (EQE) in organic solar cells and the fibrillar microstructure in the blend. The polymers consist of electron-deficient DPP units, carrying long branched 2'-decyltetradecyl (DT) side chains for solubility, that alternate along the main chain with electron-rich aromatic segments comprising benzene, thiophene, or fused aromatic rings. The high molecular weight DT-DPP polymers were incorporated in bulk heterojunction solar cells with [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) as acceptor. The morphology of the DT-DPP:[70]PCBM blends is characterized by a semicrystalline fibrillar microstructure with fibril widths between 4.5 and 30 nm as evidenced from transmission electron microscopy. A clear correlation is found between the widths of the fibrils and the EQE for photon to electron conversion. The highest EQEs (60%) and power conversion efficiencies (7.1%) are obtained for polymers with fibril widths less than 12 nm. For blends with fibrils wider than 12 nm, the EQE is low because exciton diffusion becomes limiting for charge generation. Interestingly, the correlation found here matches with previous data on related DPP-based polymers. This suggests that for this class of materials the relation between fiber width and EQE is universal. The fiber width is largely correlated with the solubility of the polymers, with less soluble DPP-based polymers giving narrower fibrils.

18.
J Am Chem Soc ; 135(32): 12057-67, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23863101

RESUMO

The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic, spectroscopic, and scattering techniques and a large degree of control has been obtained, the current understanding of the processes involved is limited. Hence, predicting the optimized processing conditions and the corresponding device performance remains a challenge. We present an experimental and modeling study on blends of a small band gap diketopyrrolopyrrole-quinquethiophene alternating copolymer (PDPP5T) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) cast from chloroform solution. The model uses the homogeneous Flory-Huggins free energy of the multicomponent blend and accounts for interfacial interactions between (locally) separated phases, based on physical properties of the polymer, fullerene, and solvent. We show that the spinodal liquid-liquid demixing that occurs during drying is responsible for the observed morphologies. The model predicts an increasing feature size and decreasing fullerene concentration in the polymer matrix with increasing drying time in accordance with experimental observations and device performance. The results represent a first step toward a predictive model for morphology formation.

19.
ChemSusChem ; 16(6): e202300006, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36601966

RESUMO

Creating new donor materials is crucial for further advancing organic solar cells. Random terpolymers have been adopted to overcome shortcomings of regular alternating donor-acceptor (D-A) polymers of which the performance is often susceptible to batch-to-batch variations. In general, the properties and performance of efficient D1 -A-D2 -A and D-A1 -D-A2 terpolymers are sensitive to the D1 /D2 or A1 /A2 monomer ratios. Side-chain hybridization is a strategy to address this problem. Here, six D1 -A-D2 -A-type random terpolymers comprising D1 and D2 monomers with the same π-conjugated D unit but with different side chains were synthesized. The side chains, containing either fluorine or trialkylsilyl substituents were chosen to provide near-identical optoelectronic properties but provide a tool to create a better-optimized film morphology when blended with a non-fullerene acceptor. This strategy allows improving the device performance to over 18 %, higher than that obtained with the corresponding D1 -A or D2 -A bipolymers (around 17 %). Hence, side-chain hybridization is a promising strategy to design efficient D1 -A-D2 -A terpolymer donors that are insensitive to the D1 /D2 monomer ratio, which is beneficial for the scaled-up synthesis of high-performance materials.

20.
ACS Energy Lett ; 8(4): 1662-1670, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090170

RESUMO

Photoinduced halide segregation hinders widespread application of three-dimensional (3D) mixed-halide perovskites. Much less is known about this phenomenon in lower-dimensional systems. Here, we study photoinduced halide segregation in lower-dimensional mixed iodide-bromide perovskites (PEA2MA n-1Pb n (Br x I1-x )3n+1, with PEA+: phenethylammonium and MA+: methylammonium) through time-dependent photoluminescence (PL) spectroscopy. We show that layered two-dimensional (2D) structures render additional stability against the demixing of halide phases under illumination. We ascribe this behavior to reduced halide mobility due to the intrinsic heterogeneity of 2D mixed-halide perovskites, which we demonstrate via 207Pb solid-state NMR. However, the dimensionality of the 2D phase is critical in regulating photostability. By tracking the PL of multidimensional perovskite films under illumination, we find that while halide segregation is largely inhibited in 2D perovskites (n = 1), it is not suppressed in quasi-2D phases (n = 2), which display a behavior intermediate between 2D and 3D and a peculiar absence of halide redistribution in the dark that is only induced at higher temperature for the quasi-2D phase.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa