Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 360(1): 117-128, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27811173

RESUMO

Allosteric potentiators amplify the sensitivity of physiologic control circuits, a mode of action that could provide therapeutic advantages. This hypothesis was tested with the dopamine D1 receptor potentiator DETQ [2-(2,6-dichlorophenyl)-1-((1S,3R)-3-(hydroxymethyl)-5-(2-hydroxypropan-2-yl)-1-methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one]. In human embryonic kidney 293 (HEK293) cells expressing the human D1 receptor, DETQ induced a 21-fold leftward shift in the cAMP response to dopamine, with a Kb of 26 nM. The maximum response to DETQ alone was ∼12% of the maximum response to dopamine, suggesting weak allosteric agonist activity. DETQ was ∼30-fold less potent at rat and mouse D1 receptors and was inactive at the human D5 receptor. To enable studies in rodents, an hD1 knock-in mouse was generated. DETQ (3-20 mg/kg orally) caused a robust (∼10-fold) increase in locomotor activity (LMA) in habituated hD1 mice but was inactive in wild-type mice. The LMA response to DETQ was blocked by the D1 antagonist SCH39166 and was dependent on endogenous dopamine. LMA reached a plateau at higher doses (30-240 mg/kg) even though free brain levels of DETQ continued to increase over the entire dose range. In contrast, the D1 agonists SKF 82958, A-77636, and dihydrexidine showed bell-shaped dose-response curves with a profound reduction in LMA at higher doses; video-tracking confirmed that the reduction in LMA caused by SKF 82958 was due to competing stereotyped behaviors. When dosed daily for 4 days, DETQ continued to elicit an increase in LMA, whereas the D1 agonist A-77636 showed complete tachyphylaxis by day 2. These results confirm that allosteric potentiators may have advantages compared with direct-acting agonists.


Assuntos
Comportamento Animal/efeitos dos fármacos , Técnicas de Introdução de Genes , Isoquinolinas/farmacologia , Locomoção/efeitos dos fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Taquifilaxia , Adamantano/análogos & derivados , Adamantano/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Benzopiranos/farmacologia , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Isoquinolinas/efeitos adversos , Masculino , Camundongos , Transporte Proteico/efeitos dos fármacos , Receptores de Dopamina D1/agonistas
2.
ACS Infect Dis ; 5(2): 272-280, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30501173

RESUMO

To find new inhibitors of Mycobacterium tuberculosis that have novel mechanisms of action, we miniaturized a high throughput screen to identify compounds that disrupt pH homeostasis. We adapted and validated a 384-well format assay to determine intrabacterial pH using a ratiometric green fluorescent protein. We screened 89000 small molecules under nonreplicating conditions and confirmed 556 hits that reduced intrabacterial pH (below pH 6.5). We selected five compounds that disrupt intrabacterial pH homeostasis and also showed some activity against nonreplicating bacteria in a 4-stress model, but with no (or greatly reduced) activity against replicating bacteria. The compounds selected were two benzamide sulfonamides, a benzothiadiazole, a bissulfone, and a thiadiazole, none of which are known antibacterial agents. All of these five compounds demonstrated bactericidal activity against nonreplicating bacteria in buffer. Four of the five compounds demonstrated increased activity under low pH conditions. None of the five compounds acted as ionophores or as general disrupters of membrane potential. These compounds are useful starting points for work to elucidate their mechanism of action and their utility for drug discovery.


Assuntos
Antituberculosos/isolamento & purificação , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Descoberta de Drogas , Proteínas de Fluorescência Verde , Ensaios de Triagem em Larga Escala , Homeostase , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana
3.
J Pharmacol Exp Ther ; 315(3): 1265-77, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16141369

RESUMO

FMPD [6-fluoro-10-[3-(2-methoxyethyl)-4-methyl-piperazin-1-yl]-2-methyl-4H-3-thia-4,9-diaza-benzo[f]azulene] is a potential novel antipsychotic with high affinity for dopamine D2 (Ki= 6.3 nM), 5-HT(2A) (Ki= 7.3 nM), and 5-HT6 (Ki= 8.0 nM) human recombinant receptors and lower affinity for histamine H1 (Ki= 30 nM) and 5-HT2C (Ki= 102 nM) human recombinant receptors than olanzapine. Oral administration of FMPD increased rat nucleus accumbens 3,4-dihyroxyphenylacetic acid concentrations (ED200 = 6 mg/kg), blocked 5-HT2A agonist-induced increases in rat serum corticosterone levels (ED50= 1.8 mg/kg), and inhibited the ex vivo binding of [125I]SB-258585 [4-iodo-N-[4-methoxy-3-(4-methyl-piperazin-1-yl)-phenyl]-benzenesulfonamide] to striatal 5-HT6 receptors (ED50= 10 mg/kg) but failed to inhibit ex vivo binding of [3H]pyrilamine to hypothalamic histamine H1 receptors at doses of up to 30 mg/kg. In electrophysiology studies, acute administration of FMPD selectively elevated the number of spontaneously active A10 (versus A9) dopamine neurons and chronic administration selectively decreased the number of spontaneously active A10 (versus A9) dopamine neurons. FMPD did not produce catalepsy at doses lower than 25 mg/kg p.o. In Fos-induction studies, FMPD had an atypical antipsychotic profile in the striatum and nucleus accumbens and increased Fos expression in orexin-containing neurons of the hypothalamus. FMPD produced only a transient elevation of prolactin levels. These data indicate that FMPD is an orally available potent antagonist of dopamine D2, 5-HT2A, and 5-HT6 receptors and a weak antagonist of H1 and 5-HT2C receptors. FMPD has the potential to have efficacy in treating schizophrenia and bipolar mania with a low risk of treatment-emergent extrapyramidal symptoms, prolactin elevation, and weight gain. Clinical trials are needed to test these hypotheses.


Assuntos
Antipsicóticos/farmacologia , Piperazinas/farmacologia , Receptores Histamínicos H1/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/análise , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Antipsicóticos/metabolismo , Benzodiazepinas/química , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Peso Corporal/efeitos dos fármacos , Catalepsia/induzido quimicamente , Cocaína/farmacologia , Corticosterona/sangue , Avaliação Pré-Clínica de Medicamentos , Eletroquímica , Eletrofisiologia , Jejum , Feminino , Imuno-Histoquímica , Masculino , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Olanzapina , Piperazinas/química , Piperazinas/metabolismo , Prolactina/sangue , Quipazina/farmacologia , Ensaio Radioligante , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos , Ratos Sprague-Dawley , Agonistas do Receptor de Serotonina/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa