Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Magn Reson Imaging ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265188

RESUMO

Ever since its introduction as a diagnostic imaging tool the potential of magnetic resonance imaging (MRI) in radiation therapy (RT) treatment simulation and planning has been recognized. Recent technical advances have addressed many of the impediments to use of this technology and as a result have resulted in rapid and growing adoption of MRI in RT. The purpose of this article is to provide a broad review of the multiple uses of MR in the RT treatment simulation and planning process, identify several of the most used clinical scenarios in which MR is integral to the simulation and planning process, highlight existing limitations and provide multiple unmet needs thereby highlighting opportunities for the diagnostic MR imaging community to contribute and collaborate with our oncology colleagues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 5.

2.
Magn Reson Med ; 88(1): 195-210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35381110

RESUMO

PURPOSE: To develop self-navigated motion correction for 3D silent zero echo time (ZTE) based neuroimaging and characterize its performance for different types of head motion. METHODS: The proposed method termed MERLIN (Motion Estimation & Retrospective correction Leveraging Interleaved Navigators) achieves self-navigation by using interleaved 3D phyllotaxis k-space sampling. Low resolution navigator images are reconstructed continuously throughout the ZTE acquisition using a sliding window and co-registered in image space relative to a fixed reference position. Rigid body motion corrections are then applied retrospectively to the k-space trajectory and raw data and reconstructed into a final, high-resolution ZTE image. RESULTS: MERLIN demonstrated successful and consistent motion correction for magnetization prepared ZTE images for a range of different instructed motion paradigms. The acoustic noise response of the self-navigated phyllotaxis trajectory was found to be only slightly above ambient noise levels (<4 dBA). CONCLUSION: Silent ZTE imaging combined with MERLIN addresses two major challenges intrinsic to MRI (i.e., subject motion and acoustic noise) in a synergistic and integrated manner without increase in scan time and thereby forms a versatile and powerful framework for clinical and research MR neuroimaging applications.


Assuntos
Imageamento por Ressonância Magnética , Neurofibromina 2 , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Neuroimagem , Estudos Retrospectivos
3.
Hum Brain Mapp ; 42(9): 2833-2850, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33729637

RESUMO

Looping Star is a near-silent, multi-echo, 3D functional magnetic resonance imaging (fMRI) technique. It reduces acoustic noise by at least 25dBA, with respect to gradient-recalled echo echo-planar imaging (GRE-EPI)-based fMRI. Looping Star has successfully demonstrated sensitivity to the cerebral blood-oxygen-level-dependent (BOLD) response during block design paradigms but has not been applied to event-related auditory perception tasks. Demonstrating Looping Star's sensitivity to such tasks could (a) provide new insights into auditory processing studies, (b) minimise the need for invasive ear protection, and (c) facilitate the translation of numerous fMRI studies to investigations in sound-averse patients. We aimed to demonstrate, for the first time, that multi-echo Looping Star has sufficient sensitivity to the BOLD response, compared to that of GRE-EPI, during a well-established event-related auditory discrimination paradigm: the "oddball" task. We also present the first quantitative evaluation of Looping Star's test-retest reliability using the intra-class correlation coefficient. Twelve participants were scanned using single-echo GRE-EPI and multi-echo Looping Star fMRI in two sessions. Random-effects analyses were performed, evaluating the overall response to tones and differential tone recognition, and intermodality analyses were computed. We found that multi-echo Looping Star exhibited consistent sensitivity to auditory stimulation relative to GRE-EPI. However, Looping Star demonstrated lower test-retest reliability in comparison with GRE-EPI. This could reflect differences in functional sensitivity between the techniques, though further study is necessary with additional cognitive paradigms as varying cognitive strategies between sessions may arise from elimination of acoustic scanner noise.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Discriminação Psicológica/fisiologia , Neuroimagem Funcional/normas , Imageamento por Ressonância Magnética/normas , Adulto , Córtex Auditivo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Imagem Ecoplanar/normas , Feminino , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Ruído
4.
Magn Reson Med ; 85(2): 926-935, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32936490

RESUMO

PURPOSE: Because of short signal lifetimes and respiratory motion, 3D lung MRI is still challenging today. Zero-TE (ZTE) pulse sequences offer promising solutions as they overcome the issue of short T2∗ . Nevertheless, as they rely on continuous readout gradients, the trajectories they follow in k-space are not adapted to retrospective gating and inferred motion correction. THEORY AND METHODS: We propose AZTEK (adaptive ZTE k-space trajectories), a set of 3D radial trajectories featuring three tuning parameters, to adapt the acquisition to any moving organ while keeping seamless transitions between consecutive spokes. Standard ZTE and AZTEK trajectories were compared for static and moving phantom acquisitions as well as for human thoracic imaging performed on 3 volunteers (1 healthy and 2 patients with lung cancer). RESULTS: For the static phantom, we observe comparable image qualities with standard and AZTEK trajectories. For the moving phantom, spatially coherent undersampling artifacts observed on gated images with the standard trajectory are alleviated with AZTEK. The same improvement in image quality is obtained in human, so details are more delineated in the lung with the use of the adaptive trajectory. CONCLUSION: The AZTEK technique opens the possibility for 3D dynamic ZTE lung imaging with retrospective gating. It enables us to uniformly sample the k-space for any arbitrary respiratory motion gate, while preserving static image quality, improving dynamic image quality and guaranteeing continuous readout gradient transitions between spokes, which makes it appropriate to ZTE.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Artefatos , Humanos , Imagens de Fantasmas , Estudos Retrospectivos
5.
Pediatr Radiol ; 51(1): 57-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860525

RESUMO

BACKGROUND: MRI of lung parenchyma is challenging because of the rapid decay of signal by susceptibility effects of aerated lung on routine fast spin-echo sequences. OBJECTIVE: To assess lung signal intensity in children on ultrashort echo-time sequences in comparison to a fast spin-echo technique. MATERIALS AND METHODS: We conducted a retrospective study of lung MRI obtained in 30 patients (median age 5 years, range 2 months to 18 years) including 15 with normal lungs and 15 with cystic fibrosis. On a fast spin-echo sequence with radial readout and an ultrashort echo-time sequence, both lungs were segmented and signal intensities were extracted. We compared lung-to-background signal ratios and histogram analysis between the two patient cohorts using non-parametric tests and correlation analysis. RESULTS: On ultrashort echo-time the lung-to-background ratio was age-dependent, ranging from 3.15 to 1.33 with high negative correlation (Rs = -0.86). Signal in posterior dependent portions of the lung was 18% and 11% higher than that of the anterior lung for age groups 0-2 and 2-18 years, respectively. The fast spin-echo sequence showed no variation of signal ratios by age or location, with a median of 0.99 (0.98-1.02). Histograms of ultrashort echo-time slices between controls and children with aggravated cystic fibrosis with mucus plugging and wall thickening exhibited significant discrepancies that differentiated between normal and pathological lungs. CONCLUSION: Signal intensity of lung on ultrashort echo-time is higher than that on fast spin-echo sequences, is age-dependent and shows a gravity-dependent anterior to posterior gradient. This signal variation appears similar to lung density described on CT.


Assuntos
Fibrose Cística , Interpretação de Imagem Assistida por Computador , Criança , Fibrose Cística/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Lactente , Recém-Nascido , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
6.
Magn Reson Med ; 83(1): 195-202, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429994

RESUMO

PURPOSE: To introduce a new method for in-phase zero TE (ipZTE) musculoskeletal MR imaging. METHODS: ZTE is a 3D radial imaging method, which is sensitive to chemical shift off-resonance signal interference, especially around fat-water tissue interfaces. The ipZTE method addresses this fat-water chemical shift artifact by acquiring each 3D radial spoke at least twice with varying readout gradient amplitude and hence varying effective sampling time. Using k-space-based chemical shift decomposition, the acquired data is then reconstructed into an in-phase ZTE image and an out-of-phase disturbance. RESULTS: The ipZTE method was tested for knee, pelvis, brain, and whole-body. The obtained images demonstrate exceptional soft-tissue uniformity free from out-of-phase disturbances apparent in the original ZTE images. The chemical shift decomposition was found to improve SNR at the cost of reduced image resolution. CONCLUSION: The ipZTE method can be used as an averaging mechanism to eliminate fat-water chemical shift artifacts and improve SNR. The method is expected to improve ZTE-based musculoskeletal imaging and pseudo CT conversion as required for PET/MR attenuation correction and MR-guided radiation therapy planning.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Artefatos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imagem Multimodal , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Água/química , Imagem Corporal Total
7.
Magn Reson Med ; 84(2): 813-824, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31961961

RESUMO

PURPOSE: To compare the silent rotating ultrafast imaging sequence (RUFIS) to a traditional Cartesian spoiled gradient-echo (SPGR) acquisition scheme for variable flip angle (VFA) T1 mapping. METHODS: A two-point VFA measurement was performed using RUFIS and Cartesian SPGR in a quantitative phantom and healthy volunteers. To correct for B1 errors, a novel silent magnetization prepared B1 map acquisition (SIMBA) was developed, which combined with RUFIS VFA allows for a completely silent T1 mapping protocol. RESULTS: The silent protocol was found to have comparable repeatability but higher reproducibility in vivo compared to the standard SPGR protocol, and showed no increase in acoustic noise levels above background noise levels compared to a 33 dBA increase for the SPGR acquisition. CONCLUSIONS: VFA T1 mapping using RUFIS is a feasible alternative to SPGR, achieving silent T1 mapping with comparable acquisition time.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes
8.
J Magn Reson Imaging ; 52(3): 739-751, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32073206

RESUMO

BACKGROUND: Conventional T2 *-weighted functional magnetic resonance imaging (fMRI) is performed with echo-planar imaging (EPI) sequences that create substantial acoustic noise. The loud acoustic noise not only affects the activation of the auditory cortex, but may also interfere with resting state and task fMRI experiments. PURPOSE: To demonstrate the feasibility of a novel, quiet, T2 *, whole-brain blood oxygenation level-dependent (BOLD)-fMRI method, termed Looping Star, compared to conventional multislice gradient-echo EPI. STUDY TYPE: Prospective. PHANTOM/SUBJECTS: Glover stability QA phantom; 10 healthy volunteers. FIELD STRENGTH/SEQUENCE: 3.0T: gradient echo (GE)-EPI and T2 * Looping Star fMRI. ASSESSMENT: Looping Star fMRI was presented and compared to GE-EPI with a working memory (WM) task and resting state (RS) experiments. Temporal stability and acoustic measurements were obtained for both methods. Functional maps and activation accuracy were compared to evaluate the performance of the novel sequence. STATISTICAL TESTS: Mean and standard deviation values were analyzed for temporal stability and acoustic noise tests. Activation maps were assessed with one-sample t-tests and contrast estimates (CE). Paired t-tests and receiver operator characteristic (ROC) were used to compare fMRI sensitivity and performance. RESULTS: Looping Star presented a 98% reduction in sound pressure compared with GE-EPI, with stable temporal stability (0.09% percent fluctuation), but reduced temporal signal-to-noise ratio (tSNR) (mean difference = 15.9%). The novel method yielded consistent activations for RS and WM (83.4% and 69.5% relative BOLD sensitivity), which increased with task difficulty (mean CE 2-back = 0.56 vs. 0-back = 0.08, P < 0.05). A few differences in spatial activations were found between sequences, leading to a 4-8% lower activation accuracy with Looping Star. DATA CONCLUSION: Looping Star provides a suitable approach for whole-brain coverage with sufficient spatiotemporal resolution and BOLD sensitivity, with only 0.5 dB above ambient noise. From the comparison with GE-EPI, further developments of Looping Star fMRI should target increased sensitivity and spatial specificity for both RS and task experiments. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:739-751.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição , Humanos , Estudos Prospectivos
9.
Magn Reson Med ; 81(1): 57-68, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30106186

RESUMO

PURPOSE: To introduce a novel MR pulse sequence, termed Looping Star, for fast, robust, and yet quiet, 3D radial multi-gradient echo T2* MR imaging. METHODS: The Looping Star pulse sequence is based on the 3D radial Rotating Ultra-Fast Imaging Sequence (RUFIS) extended by a time-multiplexed gradient-refocusing mechanism. First, multiple magnetic coherences are excited, which are subsequently gradient-refocused in form of a looping k-space trajectory. Accordingly, Looping Star captures an initial FID image followed by gradient echo images at equidistant echo times. RESULTS: Looping Star was demonstrated in phantom and in vivo volunteer experiments for 3D, high resolution T2* weighted imaging, T2* mapping, and quantitative susceptibility mapping (QSM). The method is fast, quiet, and robust against imperfections including Eddy currents, motion, and geometric distortions. When applied to a motor task fMRI experiment a BOLD sensitivity of 5% was achieved at minimal acoustic noise (i.e. 2.7 dB(A) above ambient noise) and with images congruent to other anatomical scans. CONCLUSIONS: Looping Star imaging provides new and exciting opportunities for fast, robust and yet quiet T2* MR imaging. Potential applications include T2*-weighted imaging, T2* mapping, QSM, and fMRI.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Acústica , Algoritmos , Calibragem , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão , Imagens de Fantasmas , Reprodutibilidade dos Testes
10.
Magn Reson Med ; 81(4): 2277-2287, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30387897

RESUMO

PURPOSE: To obtain T2* and T2 -weighted images as well as quantitative T2* , T2 , and susceptibility maps with a novel, silent 3D imaging method, which combines zero-echo-time (ZTE) imaging with gradient- and spin-echo BURST encoding. METHODS: After a segment of standard ZTE encoding with multiple 3D radial k-space spokes, the direction of traversing k-space is reversed while excitation is switched off. This recalls gradient echoes for each spoke/excitation. This results in multiple images: one FID image from ZTE and multiple BURST echo images at different echo times weighted by a T2* decay. By adding a pair of 180° pulses with an appropriate wait period, it is also possible to obtain spin echoes, leading to T2 -weighted images. Data is reconstructed using standard 3D gridding and Fourier transformation. In vivo feasibility was demonstrated by imaging the brain of multiple healthy volunteers. RESULTS: It is possible to acquire high-quality T2* - and T2 -weighted brain images in a silent manner. From images acquired with gradient-echo ZTE-BURST, it is possible to extract quantitative T2* and magnetic susceptibility maps, whereas the spin echo version yields T2 maps. CONCLUSION: ZTE combined with BURST enables silent acquisition of T2* - and T2 -weighted images with good image quality.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Acústica , Adulto , Algoritmos , Simulação por Computador , Análise de Fourier , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Imagens de Fantasmas , Software
11.
Neuroimage ; 181: 403-413, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010010

RESUMO

PURPOSE: The impact of MR-based attenuation correction on PET quantitation accuracy is an ongoing cause of concern for advanced brain research with PET/MR. The purpose of this study was to evaluate a new, template-enhanced zero-echo-time attenuation correction method for PET/MR scanners. METHODS: 30 subjects underwent a clinically-indicated 18F-FDG-PET/CT, followed by PET/MR on a GE SIGNA PET/MR. For each patient, a 42-s zero echo time (ZTE) sequence was used to generate two attenuation maps: one with the standard ZTE segmentation-based method; and another with a modification of the method, wherein pre-registered anatomical templates and CT data were used to enhance the segmentation. CT data, was used as gold standard. Reconstructed PET images were qualified visually and quantified in 68 volumes-of-interest using a standardized brain atlas. RESULTS: Attenuation maps were successfully generated in all cases, without manual intervention or parameter tuning. One patient was excluded from the quantitative analysis due to the presence of multiple brain metastases. The PET bias with template-enhanced ZTE attenuation correction was measured to be -0.9% ±â€¯0.9%, compared with -1.4% ±â€¯1.1% with regular ZTE attenuation correction. In terms of absolute bias, the new method yielded 1.1% ±â€¯0.7%, compared with 1.6% ±â€¯0.9% with regular ZTE. Statistically significant bias reduction was obtained in the frontal region (from -2.0% to -1.0%), temporal (from -1.2% to -0.2%), parietal (from -1.9% to -1.1%), occipital (from -2.0% to -1.1%) and insula (from -1.4% to -1.1%). CONCLUSION: These results indicate that the co-registration of pre-recorded anatomical templates to ZTE data is feasible in clinical practice and can be effectively used to improve the performance of segmentation-based attenuation correction.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/normas , Neuroimagem/normas , Tomografia por Emissão de Pósitrons/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Atlas como Assunto , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X
12.
Magn Reson Med ; 80(4): 1440-1451, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29457287

RESUMO

PURPOSE: To describe a method for converting Zero TE (ZTE) MR images into X-ray attenuation information in the form of pseudo-CT images and demonstrate its performance for (1) attenuation correction (AC) in PET/MR and (2) dose planning in MR-guided radiation therapy planning (RTP). METHODS: Proton density-weighted ZTE images were acquired as input for MR-based pseudo-CT conversion, providing (1) efficient capture of short-lived bone signals, (2) flat soft-tissue contrast, and (3) fast and robust 3D MR imaging. After bias correction and normalization, the images were segmented into bone, soft-tissue, and air by means of thresholding and morphological refinements. Fixed Hounsfield replacement values were assigned for air (-1000 HU) and soft-tissue (+42 HU), whereas continuous linear mapping was used for bone. RESULTS: The obtained ZTE-derived pseudo-CT images accurately resembled the true CT images (i.e., Dice coefficient for bone overlap of 0.73 ± 0.08 and mean absolute error of 123 ± 25 HU evaluated over the whole head, including errors from residual registration mismatches in the neck and mouth regions). The linear bone mapping accounted for bone density variations. Averaged across five patients, ZTE-based AC demonstrated a PET error of -0.04 ± 1.68% relative to CT-based AC. Similarly, for RTP assessed in eight patients, the absolute dose difference over the target volume was found to be 0.23 ± 0.42%. CONCLUSION: The described method enables MR to pseudo-CT image conversion for the head in an accurate, robust, and fast manner without relying on anatomical prior knowledge. Potential applications include PET/MR-AC, and MR-guided RTP.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Imagens de Fantasmas
13.
Eur J Nucl Med Mol Imaging ; 44(7): 1223-1233, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28124091

RESUMO

PURPOSE: Our objective was to determine clinically the value of time-of-flight (TOF) information in reducing PET artifacts and improving PET image quality and accuracy in simultaneous TOF PET/MR scanning. METHODS: A total 65 patients who underwent a comparative scan in a simultaneous TOF PET/MR scanner were included. TOF and non-TOF PET images were reconstructed, clinically examined, compared and scored. PET imaging artifacts were categorized as large or small implant-related artifacts, as dental implant-related artifacts, and as implant-unrelated artifacts. Differences in image quality, especially those related to (implant) artifacts, were assessed using a scale ranging from 0 (no artifact) to 4 (severe artifact). RESULTS: A total of 87 image artifacts were found and evaluated. Four patients had large and eight patients small implant-related artifacts, 27 patients had dental implants/fillings, and 48 patients had implant-unrelated artifacts. The average score was 1.14 ± 0.82 for non-TOF PET images and 0.53 ± 0.66 for TOF images (p < 0.01) indicating that artifacts were less noticeable when TOF information was included. CONCLUSION: Our study indicates that PET image artifacts are significantly mitigated with integration of TOF information in simultaneous PET/MR. The impact is predominantly seen in patients with significant artifacts due to metal implants.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Adulto , Idoso , Idoso de 80 Anos ou mais , Implantes Dentários , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão Sinal-Ruído , Fatores de Tempo , Adulto Jovem
14.
Magn Reson Med ; 75(2): 897-905, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25772214

RESUMO

PURPOSE: To design, build, and characterize the performance of a novel 3T, 31-channel breast coil. METHODS: A flexible breast coil, accommodating all breast sizes while preserving close to unity filling factors in all configurations, was designed and built. Its performance was compared to the performance of the current state-of-the-art, 16 channel breast coil (Sentinelle coil, Hologic, Bedford, MA, USA), in phantoms and in vivo. RESULTS: Better axilla coverage and lower inter-coil coupling (12% versus 26%, as characterized by the average off-diagonal elements of the noise correlation matrix) was exhibited by our 31-channel coil compared with the 16-channel coil. Breast area signal-to-noise ratio increases of 68% (phantom) and 28% ± 31% (in vivo) were observed when the 31-channel coil was used. For the 31-channel/16-channel arrays, respectively, two-dimensional acceleration factors of left/right × superior/inferior = 4.3 × 2.4 resulted in average g-factors of 1.10/1.68 (in vitro) and 1.28/2.75 (in vivo); acceleration factors of left/right × anterior/posterior = 3.0 × 2.8 resulted in average g-factors of 1.06/1.54 (in vitro) and 1.05/1.12 (in vivo). CONCLUSION: A high performance breast coil was built; its capabilities were demonstrated in phantom and normal volunteer imaging experiments.


Assuntos
Mama/anatomia & histologia , Imageamento por Ressonância Magnética/instrumentação , Desenho de Equipamento , Feminino , Voluntários Saudáveis , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
15.
Magn Reson Med ; 75(4): 1402-12, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25962633

RESUMO

PURPOSE: To develop and evaluate a novel MR method that addresses some of the most eminent technical challenges of current BOLD-based fMRI in terms of 1) acoustic noise and 2) geometric distortions and signal dropouts. METHODS: A BOLD-sensitive fMRI pulse sequence was designed that first generates T2-weighted magnetization (using a T2 preparation module) and subsequently undergoes three-dimensional (3D) radial encoding using a rotating ultrafast imaging sequence (RUFIS). The method was tested on healthy volunteers at 3T with motor, visual, and auditory tasks, and compared relative to standard gradient and spin echo planar imaging (EPI) methods. RESULTS: In combination with parallel imaging the method achieves efficient and robust 3D whole brain coverage (3 mm isotropic resolution in 2.65 s scan time). Compared with standard EPI-based fMRI, the method demonstrated 1) T2-weighted imaging clean of geometrical distortions and signal dropout, 2) an acoustic noise reduction of ∼40 dB(A), and 3) a consistent BOLD response that is less sensitive (∼1.3% BOLD change) but spatially more specific. CONCLUSION: T2-prepared RUFIS provides quiet and distortion-free whole brain BOLD fMRI with minimal demands on the gradient performance. In particular, auditory fMRI and/or studies involving brain regions near air-tissue interfaces are expected to greatly benefit from the proposed method, especially if performed at ultrahigh field strengths.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Humanos
16.
Magn Reson Med ; 75(1): 107-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25639956

RESUMO

PURPOSE: To investigate proton density (PD)-weighted zero TE (ZT) imaging for morphological depiction and segmentation of cranial bone structures. METHODS: A rotating ultra-fast imaging sequence (RUFIS) type ZT pulse sequence was developed and optimized for 1) efficient capture of short T2 bone signals and 2) flat PD response for soft-tissues. An inverse logarithmic image scaling (i.e., -log(image)) was used to highlight bone and differentiate it from surrounding soft-tissue and air. Furthermore, a histogram-based bias-correction method was developed for subsequent threshold-based air, soft-tissue, and bone segmentation. RESULTS: PD-weighted ZT imaging in combination with an inverse logarithmic scaling was found to provide excellent depiction of cranial bone structures. In combination with bias correction, also excellent segmentation results were achieved. A two-dimensional histogram analysis demonstrates a strong, approximately linear correlation between inverse log-scaled ZT and low-dose CT for Hounsfield units (HU) between -300 HU and 1,500 HU (corresponding to soft-tissue and bone). CONCLUSIONS: PD-weighted ZT imaging provides robust and efficient depiction of bone structures in the head, with an excellent contrast between air, soft-tissue, and bone. Besides structural bone imaging, the presented method is expected to be of relevance for attenuation correction in positron emission tomography (PET)/MR and MR-based radiation therapy planning.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Crânio/anatomia & histologia , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
NMR Biomed ; 28(6): 715-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25908233

RESUMO

The aim of this study was to characterise and compare widely used acquisition strategies for hyperpolarised (13)C imaging. Free induction decay chemical shift imaging (FIDCSI), echo-planar spectroscopic imaging (EPSI), IDEAL spiral chemical shift imaging (ISPCSI) and spiral chemical shift imaging (SPCSI) sequences were designed for two different regimes of spatial resolution. Their characteristics were studied in simulations and in tumour-bearing rats after injection of hyperpolarised [1-(13)C]pyruvate on a clinical 3-T scanner. Two or three different sequences were used on the same rat in random order for direct comparison. The experimentally obtained lactate signal-to-noise ratio (SNR) in the tumour matched the simulations. Differences between the sequences were mainly found in the encoding efficiency, gradient demand and artefact behaviour. Although ISPCSI and SPCSI offer high encoding efficiencies, these non-Cartesian trajectories are more prone than EPSI and FIDCSI to artefacts from various sources. If the encoding efficiency is sufficient for the desired application, EPSI has been proven to be a robust choice. Otherwise, faster spiral acquisition schemes are recommended. The conclusions found in this work can be applied directly to clinical applications.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Imagem Molecular/métodos , Neoplasias Experimentais/metabolismo , Ácido Pirúvico/farmacocinética , Processamento de Sinais Assistido por Computador , Animais , Linhagem Celular Tumoral , Humanos , Armazenamento e Recuperação da Informação/métodos , Neoplasias Experimentais/patologia , Ratos , Ratos Endogâmicos F344 , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
MAGMA ; 28(3): 207-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25200814

RESUMO

OBJECT: The investigation of three-dimensional radial, zero-echo time (TE) imaging for high-resolution, free-breathing magnetic resonance (MR) lung imaging using prospective and retrospective motion correction. MATERIALS AND METHODS: Zero-TE was implemented similarly to the rotating-ultra-fast-imaging-sequence, providing 3D, isotropic, radial imaging with proton density contrast. Respiratory motion was addressed using prospective triggering (PT), prospective gating (PG) and retrospective gating (RG) with physiological signals obtained from a respiratory belt and interleaved pencil beam and DC navigators. The methods were demonstrated on four healthy volunteers at 3T. RESULTS: 3D, radial zero-TE imaging with high imaging bandwidth and nominally zero echo-time enables efficient capture of short-lived signals from the lung parenchyma and the vessels. Compared to Cartesian encoding, unaccounted for free-breathing respiration resulted in only benign blurring artifacts confined to the origin of motion. Breath holding froze respiration but achieved only limited image resolution (~1.8 mm, 30 s). PT and PG obtained similar quality expiratory-phase images at 1.2 mm resolution in ~6 min scan time. RG allowed multi-phase imaging in ~15 min, derived from eight individually stored averages. CONCLUSION: Zero-TE appears to be an attractive pulse sequence for 3D isotropic lung imaging. Prospective and retrospective approaches provide high-quality, free-breathing MR lung imaging within reasonable scan time.


Assuntos
Artefatos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Pulmão/anatomia & histologia , Técnicas de Imagem de Sincronização Respiratória/métodos , Algoritmos , Humanos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Mecânica Respiratória , Sensibilidade e Especificidade
19.
EJNMMI Phys ; 11(1): 10, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282050

RESUMO

BACKGROUND: Positron emission tomography-magnetic resonance (PET-MR) attenuation correction is challenging because the MR signal does not represent tissue density and conventional MR sequences cannot image bone. A novel zero echo time (ZTE) MR sequence has been previously developed which generates signal from cortical bone with images acquired in 65 s. This has been combined with a deep learning model to generate a synthetic computed tomography (sCT) for MR-only radiotherapy. This study aimed to evaluate this algorithm for PET-MR attenuation correction in the pelvis. METHODS: Ten patients being treated with ano-rectal radiotherapy received a [Formula: see text]F-FDG-PET-MR in the radiotherapy position. Attenuation maps were generated from ZTE-based sCT (sCTAC) and the standard vendor-supplied MRAC. The radiotherapy planning CT scan was rigidly registered and cropped to generate a gold standard attenuation map (CTAC). PET images were reconstructed using each attenuation map and compared for standard uptake value (SUV) measurement, automatic thresholded gross tumour volume (GTV) delineation and GTV metabolic parameter measurement. The last was assessed for clinical equivalence to CTAC using two one-sided paired t tests with a significance level corrected for multiple testing of [Formula: see text]. Equivalence margins of [Formula: see text] were used. RESULTS: Mean whole-image SUV differences were -0.02% (sCTAC) compared to -3.0% (MRAC), with larger differences in the bone regions (-0.5% to -16.3%). There was no difference in thresholded GTVs, with Dice similarity coefficients [Formula: see text]. However, there were larger differences in GTV metabolic parameters. Mean differences to CTAC in [Formula: see text] were [Formula: see text] (± standard error, sCTAC) and [Formula: see text] (MRAC), and [Formula: see text] (sCTAC) and [Formula: see text] (MRAC) in [Formula: see text]. The sCTAC was statistically equivalent to CTAC within a [Formula: see text] equivalence margin for [Formula: see text] and [Formula: see text] ([Formula: see text] and [Formula: see text]), whereas the MRAC was not ([Formula: see text] and [Formula: see text]). CONCLUSION: Attenuation correction using this radiotherapy ZTE-based sCT algorithm was substantially more accurate than current MRAC methods with only a 40 s increase in MR acquisition time. This did not impact tumour delineation but did significantly improve the accuracy of whole-image and tumour SUV measurements, which were clinically equivalent to CTAC. This suggests PET images reconstructed with sCTAC would enable accurate quantitative PET images to be acquired on a PET-MR scanner.

20.
Magn Reson Med ; 69(5): 1209-16, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22648928

RESUMO

Within the last decade hyperpolarized [1-13C] pyruvate chemical-shift imaging has demonstrated impressive potential for metabolic MR imaging for a wide range of applications in oncology, cardiology, and neurology. In this work, a highly efficient pulse sequence is described for time-resolved, multislice chemical shift imaging of the injected substrate and obtained downstream metabolites. Using spectral-spatial excitation in combination with single-shot spiral data acquisition, the overall encoding is evenly distributed between excitation and signal reception, allowing the encoding of one full two-dimensional metabolite image per excitation. The signal-to-noise ratio can be flexibly adjusted and optimized using lower flip angles for the pyruvate substrate and larger ones for the downstream metabolites. Selectively adjusting the excitation of the down-stream metabolites to 90° leads to a so-called "saturation-recovery" scheme with the detected signal content being determined by forward conversion of the available pyruvate. In case of repetitive excitations, the polarization is preserved using smaller flip angles for pyruvate. Metabolic exchange rates are determined spatially resolved from the metabolite images using a simplified two-site exchange model. This novel contrast is an important step toward more quantitative metabolic imaging. Goal of this work was to derive, analyze, and implement this "saturation-recovery metabolic exchange rate imaging" and demonstrate its capabilities in four rats bearing subcutaneous tumors.


Assuntos
Alanina/metabolismo , Bicarbonatos/metabolismo , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Experimentais/metabolismo , Ácido Pirúvico/farmacocinética , Animais , Isótopos de Carbono/farmacocinética , Linhagem Celular Tumoral , Feminino , Taxa de Depuração Metabólica , Neoplasias Experimentais/diagnóstico , Prótons , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa