RESUMO
BACKGROUND: Vibrio spp. are a diverse group of ecologically important marine bacteria responsible for several foodborne outbreaks of gastroenteritis around the world. Their detection and characterization are moving away from conventional culture-based methods towards next generation sequencing (NGS)-based approaches. However, genomic methods are relative in nature and suffer from technical biases arising from library preparation and sequencing. Here, we introduce a quantitative NGS-based method that enables the quantitation of Vibrio spp. at the limit of quantification (LOQ) through artificial DNA standards and their absolute quantification via digital PCR (dPCR). RESULTS: We developed six DNA standards, called Vibrio-Sequins, together with optimized TaqMan assays for their quantification in individually sequenced DNA libraries via dPCR. To enable Vibrio-Sequin quantification, we validated three duplex dPCR methods to quantify the six targets. LOQs were ranging from 20 to 120 cp/µl for the six standards, whereas the limit of detection (LOD) was ~ 10 cp/µl for all six assays. Subsequently, a quantitative genomics approach was applied to quantify Vibrio-DNA in a pooled DNA mixture derived from several Vibrio species in a proof-of-concept study, demonstrating the increased power of our quantitative genomic pipeline through the coupling of NGS and dPCR. CONCLUSIONS: We significantly advance existing quantitative (meta)genomic methods by ensuring metrological traceability of NGS-based DNA quantification. Our method represents a useful tool for future metagenomic studies aiming at quantifying microbial DNA in an absolute manner. The inclusion of dPCR into sequencing-based methods supports the development of statistical approaches for the estimation of measurement uncertainties (MU) for NGS, which is still in its infancy.