Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(47): 16121-16155, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32921631

RESUMO

The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.


Assuntos
Antígenos de Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Estresse Fisiológico , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antígenos de Neoplasias/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Ubiquitina-Proteína Ligases/genética
2.
Nat Microbiol ; 9(6): 1593-1606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637722

RESUMO

Metabolic disease is epidemiologically linked to severe complications upon influenza virus infection, thus vaccination is a priority in this high-risk population. Yet, vaccine responses are less effective in these same hosts. Here we examined how the timing of diet switching from a high-fat diet to a control diet affected influenza vaccine efficacy in diet-induced obese mice. Our results demonstrate that the systemic meta-inflammation generated by high-fat diet exposure limited T cell maturation to the memory compartment at the time of vaccination, impacting the recall of effector memory T cells upon viral challenge. This was not improved with a diet switch post-vaccination. However, the metabolic dysfunction of T cells was reversed if weight loss occurred 4 weeks before vaccination, restoring a functional recall response. This corresponded with changes in the systemic obesity-related biomarkers leptin and adiponectin, highlighting the systemic and specific effects of diet on influenza vaccine immunogenicity.


Assuntos
Dieta Hiperlipídica , Vacinas contra Influenza , Obesidade , Infecções por Orthomyxoviridae , Animais , Camundongos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Obesidade/imunologia , Obesidade/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Camundongos Endogâmicos C57BL , Vacinação , Camundongos Obesos , Leptina/metabolismo , Masculino , Feminino , Adiponectina/metabolismo , Linfócitos T/imunologia
3.
Cell Rep ; 42(2): 112106, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36773294

RESUMO

Drak2-deficient (Drak2-/-) mice are resistant to multiple models of autoimmunity yet effectively eliminate pathogens and tumors. Thus, DRAK2 represents a potential target to treat autoimmune diseases. However, the mechanisms by which DRAK2 contributes to autoimmunity, particularly type 1 diabetes (T1D), remain unresolved. Here, we demonstrate that resistance to T1D in non-obese diabetic (NOD) mice is due to the absence of Drak2 in T cells and requires the presence of regulatory T cells (Tregs). Contrary to previous hypotheses, we show that DRAK2 does not limit TCR signaling. Rather, DRAK2 regulates IL-2 signaling by inhibiting STAT5A phosphorylation. We further demonstrate that enhanced sensitivity to IL-2 in the absence of Drak2 augments thymic Treg development. Overall, our data indicate that DRAK2 contributes to autoimmunity in multiple ways by regulating thymic Treg development and by impacting the sensitivity of conventional T cells to Treg-mediated suppression.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Camundongos , Animais , Interleucina-2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T Reguladores/metabolismo , Camundongos Endogâmicos NOD
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa