Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Ther ; 31(2): 454-470, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114673

RESUMO

Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and ß-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.


Assuntos
MicroRNAs , Cicatrização , Gravidez , Humanos , Feminino , Cicatrização/genética , Pele/metabolismo , Queratinócitos/metabolismo , Movimento Celular , MicroRNAs/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269586

RESUMO

The healing of skin wounds involves the activation and recruitment of various immune cell types, many of which are believed to contribute significantly to different aspects of the repair process. Roles for immune cells have been described in practically all stages of wound healing, including hemostasis, inflammation, proliferation and scar formation/remodeling. Over the last decade, tools to deplete immune cell populations in animal models have become more advanced, leading to a surge in the number of studies examining the function of specific immune cell types in skin repair. In this review, we will summarize what is known about distinct immune cell types in cutaneous wound healing, with an emphasis on data from animal studies in which specific cell types have been targeted.


Assuntos
Linfócitos/metabolismo , Células Mieloides/metabolismo , Pele/imunologia , Animais , Hemostasia , Humanos , Modelos Animais , Fenômenos Fisiológicos da Pele , Cicatrização
3.
Vet Surg ; 51(3): 520-527, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34994470

RESUMO

OBJECTIVES: To describe the use of an innovative printed electroceutical dressing (PED) to treat non-healing, infected chronic wounds in one dog and one cat and report outcomes. ANIMALS: A 4-year-old female spayed Mastiff and a 1-year-old female spayed domestic shorthair cat. STUDY DESIGN: Short case series. METHODS: Both cases had chronic wounds (duration: approximately 1 year for the dog and 6 3/4 months for the cat) that remained open and infected despite various wound management strategies. Both animals were treated with the PED. Observations from the records regarding wound size, antimicrobial susceptibility, and the time to healing were recorded. RESULTS: After 10 days of PED treatment in the dog and 17 days of PED treatment in the cat, the wounds had decreased in size by approximately 4.2 times in the dog and 2.5 times in the cat. Culture of punch biopsies yielded negative results. Wounds were clinically healed at 67 days in the dog and 47 days in the cat. No further treatment of the wounds was required beyond that point. CONCLUSION: Application of a PED led to closure of two chronic wounds and resolution of their persistent infection. CLINICAL SIGNIFICANCE: PEDs may provide a new treatment modality to mitigate infection and promote healing of chronic wounds.


Assuntos
Doenças do Gato , Doenças do Cão , Infecção dos Ferimentos , Animais , Bandagens , Doenças do Gato/terapia , Gatos , Desbridamento/veterinária , Doenças do Cão/terapia , Cães , Feminino , Cicatrização , Infecção dos Ferimentos/terapia , Infecção dos Ferimentos/veterinária
4.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477945

RESUMO

Macrophages are prominent cells in normally healing adult skin wounds, yet their exact functions and functional significance to healing outcomes remain enigmatic. Many functional attributes are ascribed to wound macrophages, including host defense and support of the proliferation of new tissue to replace that lost by injury. Indeed, the depletion of macrophages is unmistakably detrimental to normal skin healing in adult mammals. Yet in certain systems, dermal wounds seem to heal well with limited or even no functional macrophages, creating an apparent paradox regarding the function of this cell in wounds. Recent advances in our understanding of wound macrophage phenotypes, along with new information about cellular plasticity in wounds, may provide some explanation for the apparently contradictory findings and suggest new paradigms regarding macrophage function in wounds. Continued study of this remarkable cell is needed to develop effective therapeutic options to improve healing outcomes.


Assuntos
Macrófagos/fisiologia , Cicatrização/fisiologia , Adulto , Animais , Plasticidade Celular/imunologia , Plasticidade Celular/fisiologia , Humanos , Inflamação/etiologia , Inflamação/patologia , Mamíferos , Pele/imunologia , Pele/patologia , Pele/fisiopatologia
5.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353063

RESUMO

Scars are generated in mature skin as a result of the normal repair process, but the replacement of normal tissue with scar tissue can lead to biomechanical and functional deficiencies in the skin as well as psychological and social issues for patients that negatively affect quality of life. Abnormal scars, such as hypertrophic scars and keloids, and cutaneous fibrosis that develops in diseases such as systemic sclerosis and graft-versus-host disease can be even more challenging for patients. There is a large body of literature suggesting that inflammation promotes the deposition of scar tissue by fibroblasts. Mast cells represent one inflammatory cell type in particular that has been implicated in skin scarring and fibrosis. Most published studies in this area support a pro-fibrotic role for mast cells in the skin, as many mast cell-derived mediators stimulate fibroblast activity and studies generally indicate higher numbers of mast cells and/or mast cell activation in scars and fibrotic skin. However, some studies in mast cell-deficient mice have suggested that these cells may not play a critical role in cutaneous scarring/fibrosis. Here, we will review the data for and against mast cells as key regulators of skin fibrosis and discuss scientific gaps in the field.


Assuntos
Cicatriz/etiologia , Cicatriz/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Animais , Biomarcadores , Comunicação Celular , Cicatriz/patologia , Cicatriz Hipertrófica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibroblastos/metabolismo , Fibrose/patologia , Humanos , Queloide , Mecanotransdução Celular
6.
Wound Repair Regen ; 27(1): 19-28, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368969

RESUMO

The magnitude of the inflammatory response after skin injury is important for determining whether wounds in developing fetal skin will heal scarlessly (minimal inflammation) or with prominent scars (robust inflammation). One class of inflammatory mediators gaining attention for their role in wound inflammation is alarmins. In the current study, the alarmin interleukin-33 (IL-33) was examined in a mouse model of fetal wound healing. IL-33 expression was elevated in scar-forming embryonic day 18 wounds compared to scarless embryonic day 15 wounds. Furthermore, injection of IL-33 into embryonic day 15 wounds caused scarring when wounds were analyzed at 7 days postwounding. The introduction of IL-33 into embryonic day 15 wounds did not induce statistically significant changes in the number of neutrophils, mast cells, or macrophages in vivo. However, IL-33 treatment enhanced collagen expression in cultured fibroblasts derived from adult and fetal murine skin, suggesting that IL-33 may directly stimulate fibroblasts. In vitro studies suggested that the stimulation of collagen production by IL-33 in fibroblasts was partially dependent on NF-κB activation. Overall, the data suggest an association between IL-33 and scar formation in fetal wounds.


Assuntos
Cicatriz/patologia , Feto/patologia , Interleucina-33/metabolismo , Prenhez , Pele/patologia , Cicatrização/fisiologia , Animais , Cicatriz/embriologia , Colágeno , Modelos Animais de Doenças , Feminino , Feto/embriologia , Fibroblastos/patologia , Imuno-Histoquímica , Camundongos , Gravidez , Regeneração/fisiologia , Pele/embriologia
7.
Lasers Surg Med ; 49(7): 675-685, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28489283

RESUMO

BACKGROUND AND OBJECTIVE: Fractional CO2 laser therapy has been used to improve scar pliability and appearance; however, a variety of treatment protocols have been utilized with varied outcomes. Understanding the relationship between laser power and extent of initial tissue ablation and time frame for remodeling could help determine an optimum power and frequency for laser treatment. The characteristics of initial injury caused by fractional CO2 laser treatment, the rates of dermal remodeling and re-epithelialization, and the extent of inflammation as a function of laser stacking were assessed in this study in a porcine scar model. MATERIALS AND METHODS: Full-thickness burn wounds were created on female Red Duroc pigs followed by immediate excision of the eschar and split-thickness autografting. Three months after injury, the resultant scars were treated with a fractional CO2 laser with 70 mJ of energy delivered as either a single pulse or stacked for three consecutive pulses. Immediately prior to laser treatment and at 1, 24, 96, and 168 hours post-laser treatment, transepidermal water loss (TEWL), erythema, and microscopic characteristics of laser injury were measured. In addition, markers for inflammatory cytokines, extracellular matrix proteins, and re-epithelialization were quantified at all time points using qRT-PCR. RESULTS: Both treatments produced erythema in the scar that peaked 24 hours after treatment then decreased to basal levels by 168 hours. TEWL increased after laser treatment and returned to normal levels between 24 and 96 hours later. Stacking of the pulses did not significantly increase the depth of ablated wells or extend the presence of erythema. Interleukin 6 and monocyte chemoattractant protein-1 were found to increase significantly 1 hour after treatment but returned to baseline by 24 hours post laser. In contrast, expression of transforming growth factor ß1 and transforming growth factor ß3 increased slowly after treatment with a more modest increase than interleukin 6 and monocyte chemoattractant protein-1. CONCLUSIONS: In the current study, the properties of the ablative zones were not directly proportional to the total amount of energy applied to the porcine scars with the use of triple stacking, resulting in only minor increases to microthermal zone (MTZ) depth and width versus a single pulse. Re-epithelialization and re-establishment of epidermal barrier function were observed in laser treated scars by 48 hours post therapy. Finally, many of the inflammatory genes up-regulated by the laser ablation returned to baseline within 1 week. As a whole, these results suggest that microthermal zones created by FXCO2 treatment re-epithelialize rapidly with the inflammatory response to the laser induced injury largely resolved within 1 week post treatment. Further study is needed to understand the relationship between laser stacking and MTZ properties in human scars in order to evaluate the clinical applicability of the stacking technique. Lasers Surg. Med. 49:675-685, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Cicatriz/cirurgia , Inflamação/etiologia , Lasers de Gás/uso terapêutico , Reepitelização , Animais , Biomarcadores/metabolismo , Queimaduras/complicações , Cicatriz/etiologia , Cicatriz/metabolismo , Feminino , Inflamação/diagnóstico , Inflamação/metabolismo , Distribuição Aleatória , Suínos , Resultado do Tratamento
8.
Nanomedicine ; 12(2): 399-409, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26711960

RESUMO

Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. FROM THE CLINICAL EDITOR: In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Proteínas de Ligação a DNA/genética , DNA/administração & dosagem , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fatores do Domínio POU/genética , Fatores de Transcrição/genética , Transfecção/métodos , Animais , Linhagem Celular , DNA/genética , Eletroporação/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , Regulação para Cima
9.
Nature ; 452(7187): 591-7, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18368052

RESUMO

Clinical trials of small interfering RNA (siRNA) targeting vascular endothelial growth factor-A (VEGFA) or its receptor VEGFR1 (also called FLT1), in patients with blinding choroidal neovascularization (CNV) from age-related macular degeneration, are premised on gene silencing by means of intracellular RNA interference (RNAi). We show instead that CNV inhibition is a siRNA-class effect: 21-nucleotide or longer siRNAs targeting non-mammalian genes, non-expressed genes, non-genomic sequences, pro- and anti-angiogenic genes, and RNAi-incompetent siRNAs all suppressed CNV in mice comparably to siRNAs targeting Vegfa or Vegfr1 without off-target RNAi or interferon-alpha/beta activation. Non-targeted (against non-mammalian genes) and targeted (against Vegfa or Vegfr1) siRNA suppressed CNV via cell-surface toll-like receptor 3 (TLR3), its adaptor TRIF, and induction of interferon-gamma and interleukin-12. Non-targeted siRNA suppressed dermal neovascularization in mice as effectively as Vegfa siRNA. siRNA-induced inhibition of neovascularization required a minimum length of 21 nucleotides, a bridging necessity in a modelled 2:1 TLR3-RNA complex. Choroidal endothelial cells from people expressing the TLR3 coding variant 412FF were refractory to extracellular siRNA-induced cytotoxicity, facilitating individualized pharmacogenetic therapy. Multiple human endothelial cell types expressed surface TLR3, indicating that generic siRNAs might treat angiogenic disorders that affect 8% of the world's population, and that siRNAs might induce unanticipated vascular or immune effects.


Assuntos
Terapia Genética/métodos , Imunidade Inata/imunologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/prevenção & controle , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/metabolismo , Receptor 3 Toll-Like/metabolismo , Animais , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Interferon gama/imunologia , Interleucina-12/imunologia , Degeneração Macular/complicações , Degeneração Macular/genética , Degeneração Macular/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Neovascularização Patológica/terapia , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Receptor 3 Toll-Like/química , Receptor 3 Toll-Like/genética , Fator A de Crescimento do Endotélio Vascular/genética
10.
Exp Dermatol ; 22(8): 507-10, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23802591

RESUMO

Mast cells (MCs) are an important part of the innate immune system and are abundant in barrier organs such as the skin. They are known primarily for initiating allergic reactions, but many other biological functions have now been described for these cells. Studies have indicated that during wound repair, MCs enhance acute inflammation, stimulate reepithelialization and angiogenesis, and promote scarring. MCs have also been linked to abnormal healing, with high numbers of MCs observed in chronic wounds, hypertrophic scars and keloids. Although MCs have gained attention in the wound healing field, several unique features of MCs have yet to be examined in the context of cutaneous repair. These include the ability of MCs to: (i) produce anti-inflammatory mediators; (ii) release mediators without degranulating; and (iii) change their phenotype. Recent findings highlight the complexity of MCs and suggest that more information is needed to understand their complete range of activities during repair.


Assuntos
Mastócitos/imunologia , Cicatrização , Animais , Anti-Inflamatórios/química , Humanos , Imunidade Inata , Inflamação , Queloide/imunologia , Neovascularização Patológica/imunologia , Fenótipo , Pele/imunologia
11.
Wound Repair Regen ; 21(3): 339-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23551462

RESUMO

Chronic venous leg ulcers (CVLUs) affect approximately 600,000 people annually in the United States and accrue yearly treatment costs of US $2.5-5 billion. As the population ages, demands on health care resources for CVLU treatments are predicted to drastically increase because the incidence of CVLUs is highest in those ≥65 years of age. Furthermore, regardless of current standards of care, healing complications and high recurrence rates prevail. Thus, it is critical that factors leading to or exacerbating CVLUs be discerned and more effective, adjuvant, evidence-based treatment strategies be utilized. Previous studies have suggested that CVLUs' pathogenesis is related to the prolonged presence of high numbers of activated neutrophils secreting proteases in the wound bed that destroy growth factors, receptors, and the extracellular matrix that are essential for healing. These events are believed to contribute to a chronically inflamed wound that fails to heal. Therefore, the purpose of this project was to review studies from the past 15 years (1996-2011) that characterized neutrophil activity in the microenvironment of human CVLUs for new evidence that could explicate the proposed relationship between excessive, sustained neutrophil activity and CVLUs. We also appraised the strength of evidence for current and potential therapeutics that target excessive neutrophil activity.


Assuntos
Tratamento de Ferimentos com Pressão Negativa/métodos , Ativação de Neutrófilo/fisiologia , Neutrófilos/fisiologia , Úlcera Varicosa/metabolismo , Cicatrização , Doença Crônica , Humanos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/metabolismo , Úlcera Varicosa/patologia
12.
Wound Repair Regen ; 21(2): 282-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23438257

RESUMO

In mice, cutaneous wounds generated early in development (embryonic day 15, E15) heal scarlessly, while wounds generated late in gestation (embryonic day 18, E18) heal with scar formation. Even though both types of wounds are generated in the same sterile uterine environment, scarless fetal wounds heal without inflammation, but a strong inflammatory response is observed in scar-forming fetal wounds. We hypothesized that altered release of alarmins, endogenous molecules that trigger inflammation in response to damage, may be responsible for the age-related changes in inflammation and healing outcomes in fetal skin. The purpose of this study was to determine whether the alarmin high-mobility group box-1 (HMGB-1) is involved in fetal wound repair. Immunohistochemical analysis showed that in unwounded skin, E18 keratinocytes expressed higher levels of HMGB-1 compared with E15 keratinocytes. After injury, HMGB-1 was released to a greater extent from keratinocytes at the margin of scar-forming E18 wounds, compared with scarless E15 wounds. Furthermore, instead of healing scarlessly, E15 wounds healed with scars when treated with HMGB-1. HMGB-1-injected wounds also had more fibroblasts, blood vessels, and macrophages compared with control wounds. Together, these data suggest that extracellular HMGB-1 levels influence the quality of healing in cutaneous wounds.


Assuntos
Feto/patologia , Proteína HMGB1/metabolismo , Queratinócitos/metabolismo , Pele/patologia , Cicatrização , Ferimentos e Lesões/fisiopatologia , Animais , Cicatriz/embriologia , Cicatriz/patologia , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Idade Gestacional , Proteína HMGB1/farmacologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Regeneração , Pele/embriologia , Pele/lesões , Ferimentos e Lesões/embriologia , Ferimentos e Lesões/patologia
13.
Wound Repair Regen ; 21(1): 103-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23126606

RESUMO

While cutaneous wounds of late-gestational fetuses and on through adulthood result in scar formation, wounds incurred early in gestation have been shown to heal scarlessly. Unique properties of fetal fibroblasts are believed to mediate this scarless healing process. In this study, microarray analysis was used to identify differences in the gene expression profiles of cultured fibroblasts from embryonic day 15 (E15; midgestation) and embryonic day 18 (E18; late-gestation) skin. Sixty-two genes were differentially expressed and 12 of those genes are associated with inflammation, a process that correlates with scar formation in fetal wounds. One of the differentially expressed inflammatory genes was cyclooxygenase-1 (COX-1). COX-1 was more highly expressed in E18 fibroblasts than in E15 fibroblasts, and these differences were confirmed at the gene and protein level. Differences in COX-1 protein expression were also observed in fetal skin by immunohistochemical and immunofluorescence staining. The baseline differences in gene expression found in mid- and late-gestational fetal fibroblasts suggest that developmental alterations in fibroblasts could be involved in the transition from scarless to fibrotic fetal wound healing. Furthermore, baseline differences in the expression of inflammatory genes by fibroblasts in E15 and E18 skin may contribute to inflammation and scar formation late in gestation.


Assuntos
Cicatriz/patologia , Feto/metabolismo , Fibroblastos/metabolismo , Idade Gestacional , Pele/patologia , Cicatrização , Análise de Variância , Animais , Células Cultivadas , Cicatriz/embriologia , Ciclo-Oxigenase 1/metabolismo , Feminino , Feto/citologia , Proteínas de Fluorescência Verde , Imuno-Histoquímica , Inflamação , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Substâncias Luminescentes , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Gravidez , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Pele/embriologia , Pele/lesões , Fator de Crescimento Transformador beta/metabolismo
14.
Adv Wound Care (New Rochelle) ; 12(2): 97-116, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915768

RESUMO

Significance: The cutaneous repair process naturally results in different types of scarring that are classified as normal or pathological. Affected individuals are often affected from an esthetic, physical (functional), and psychosocial perspective. The distinct nature of scarring in humans, particularly the formation of pathological scars, makes the study of skin scarring a challenge for researchers in this area. Several established experimental models exist for studying scar formation. However, the increasing development and validation of newly emerging models have made it possible to carry out studies focused on different variables that influence this unique process. Recent Advances: Experimental models such as in vitro, ex vivo, and in vivo models have obtained different degrees of success in the reproduction of the scar formation in its native milieu and true environment. These models also differ in their ability to elucidate the molecular, cellular, and structural mechanisms involved in scarring, as well as for testing new agents and approaches for therapies. The models reviewed here, including cells derived from human skin and in vivo animal models, have contributed to the advancement of skin scarring research. Critical Issues and Future Directions: The absence of experimental models that faithfully reproduce the typical characteristics of the different types of human skin scars makes the improvement of validated models and the establishment of new ones a critical unmet need. The fields of wound healing research combined with tissue engineering have offered newer alternatives for experimental studies with the potential to provide clinically useful knowledge about scar formation.


Assuntos
Cicatriz Hipertrófica , Queloide , Animais , Humanos , Queloide/patologia , Cicatrização , Pele/patologia , Modelos Animais
15.
Methods Mol Biol ; 2193: 13-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32808254

RESUMO

The ideal response to skin injury is the complete regeneration of normal tissue without scar formation. This regenerative response is known to occur at early stages of embryonic development but is lost as the skin becomes more mature. In more developed skin, the wound-healing response is suboptimal and results in the formation of scar tissue. Scar tissue can be a significant clinical concern, causing skin dysfunction as well as psychosocial issues related to poor aesthetic outcomes. Mouse models of fetal wound healing can be useful for understanding what regulatory pathways lead to skin regeneration and scarless healing in less developed skin or scarring and fibrotic healing in more developed skin. Here, a reproducible incisional wound model in developing mice is described that our lab has used repeatedly to study scarless and fibrotic fetal wound healing.


Assuntos
Fibrose/fisiopatologia , Biologia Molecular/métodos , Regeneração/fisiologia , Cicatrização/fisiologia , Animais , Cicatriz/fisiopatologia , Modelos Animais de Doenças , Feminino , Feto/fisiologia , Humanos , Camundongos , Gravidez , Pele/fisiopatologia
16.
Pharmaceutics ; 13(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917842

RESUMO

The concept of pre-emptive priming of skin pre-surgery offers a novel approach in optimizing cutaneous scarring outcome. We previously showed an anti-scarring topical (epigallocatechin-3-gallate (EGCG)) is effective in improving skin scarring when applied post-surgery. The objective was to deliver an active compound at the optimal time in order to maximize its impact and improve cutaneous scarring. Therefore, pre-emptive application of anti-scarring topical pre-surgery compared with post-surgery can potentially be superior on scarring outcome. This double-blinded randomized placebo-controlled trial compares the effects of pre-emptive priming of skin with an anti-scarring topical pre-surgery versus post-surgery. Healthy volunteers (n = 40) were split into 4-groups; each undergoing different modes of application versus placebo: Group-1 = priming (7Days) pre-injury, Group-2 = priming (3D) pre-injury, Group-3 = immediate (0D) day-of-injury, Group-4 = delayed application (14D) post-injury. Excisional skin-biopsies in upper-arms were evaluated weekly with multiple quantitative devices over 8-weeks. Histological, immunohistochemical, mRNA sequencing and QRT-PCR studies were performed on tissue-biopsies. EGCG reduced mast cells at weeks-4 and 8 by gene and protein analyses (p < 0.01). Group 1 was superior to other groups (p < 0.01) in both clinical (blood flow) and laboratory parameters (elastin and immune marker expression). Additionally, there was down-regulation of angiogenic-markers by mRNA-sequencing and of CD31 and VEGF-A at weeks-4 and 8 (p < 0.01) by immunohistochemistry and at week-4 (p < 0.05) by QRT-PCR. EGCG increased antioxidant levels (HO-1) at week-4 (p < 0.01) plus elastin at week-8 (p < 0.01). In conclusion, pre-emptive priming of skin pre-injury has significant beneficial effects on surgically induced skin scarring shown by reducing mast cells, blood flow and angiogenesis plus increasing elastin content. This clinical trial was registered with ISRCTN (ISRCTN70155584).

17.
Artigo em Inglês | MEDLINE | ID: mdl-33123623

RESUMO

Inflammation is a key phase in the cutaneous wound repair process. The activation of inflammatory cells is critical for preventing infection in contaminated wounds and results in the release of an array of mediators, some of which stimulate the activity of keratinocytes, endothelial cells, and fibroblasts to aid in the repair process. However, there is an abundance of data suggesting that the strength of the inflammatory response early in the healing process correlates directly with the amount of scar tissue that will eventually form. This review will summarize the literature related to inflammation and cutaneous scar formation, highlight recent discoveries, and discuss potential treatment modalities that target inflammation to minimize scarring.

18.
Front Immunol ; 11: 552205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117341

RESUMO

Mast cells (MCs) are an important immune cell type in the skin and play an active role during wound healing. MCs produce mediators that can enhance acute inflammation, stimulate re-epithelialisation as well as angiogenesis, and promote skin scarring. There is also a link between MCs and abnormal pathological cutaneous scarring, with increased numbers of MCs found in hypertrophic scars and keloid disease. However, there has been conflicting data regarding the specific role of MCs in scar formation in both animal and human studies. Whilst animal studies have proved to be valuable in studying the MC phenomenon in wound healing, the appropriate translation of these findings to cutaneous wound healing and scar formation in human subjects remains crucial to elucidate the role of these cells and target treatment effectively. Therefore, this perspective paper will focus on evaluation of the current evidence for the role of MCs in skin scarring in both animals and humans in order to identify common themes and future areas for translational research.


Assuntos
Cicatriz/imunologia , Inflamação/imunologia , Mastócitos/imunologia , Pele/imunologia , Animais , Modelos Animais de Doenças , Fibrose , Humanos , Pesquisa Translacional Biomédica , Cicatrização
19.
Adv Wound Care (New Rochelle) ; 9(3): 79-89, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31993250

RESUMO

Objective: Exposure to ultraviolet (UV) light from the sun is known to accelerate the skin aging process and leads to significant alterations in skin biomechanics; however, the molecular mechanisms by which chronic UVB affects biomechanical properties of the skin have not been well described. Approach: A murine model for chronic UVB exposure was used to examine changes in epidermal barrier function, skin biomechanics, and miRNA expression as a result of UVB. Results: UVB irradiation caused skin to be weaker, less elastic, stiffer, and less pliable. Notably, these changes were not reversed after a 5-week period of recovery. Following UVB exposure, dermal collagen fibrils were significantly smaller in diameter and expression of the miR-34 family was significantly increased. Innovation: To our knowledge, this is the first study to concurrently examine alterations in skin function, miRNA expression, and tissue biomechanics in response to chronic UVB exposure. Conclusion: The data suggest that UVB alters miR-34 family expression in skin, in addition to dysregulating collagen structure with subsequent reductions in strength and elasticity. miRNAs may play a pivotal role in regulating extracellular matrix deposition and skin biomechanics following chronic UVB exposure, and thus may be a possible target for therapeutic development. However, additional studies are needed to directly probe the link between UVB exposure, miRNA production, and skin biomechanics.


Assuntos
Derme/metabolismo , Elasticidade/efeitos da radiação , Epiderme/metabolismo , MicroRNAs/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Fenômenos Biomecânicos , Colágeno/metabolismo , Derme/efeitos da radiação , Epiderme/efeitos da radiação , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos da radiação , Feminino , Camundongos , Camundongos Pelados
20.
PLoS One ; 15(11): e0241831, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33227015

RESUMO

Non-invasive, repeated interrogation of the same wound is necessary to understand the tissue repair continuum. In this work, we sought to test the significance of non-invasive high-frequency high-resolution ultrasound technology for such interrogation. High-frequency high-resolution ultrasound imaging was employed to investigate wound healing under fetal and adult conditions. Quantitative tissue cellularity and elastic strain was obtained for visualization of unresolved inflammation using Vevo strain software. Hemodynamic properties of the blood flow in the artery supplying the wound-site were studied using color Doppler flow imaging. Non-invasive monitoring of fetal and adult wound healing provided unprecedented biomechanical and functional insight. Fetal wounds showed highly accelerated closure with transient perturbation of wound tissue cellularity. Fetal hemodynamics was unique in that sharp fall in arterial pulse pressure (APP) which was rapidly restored within 48h post-wounding. In adults, APP transiently increased post-wounding before returning to the pre-wounding levels by d10 post-wounding. The pattern of change in the elasticity of wound-edge tissue of diabetics was strikingly different. Severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of the non-diabetic group. Wound bed of adult diabetic mice (db/db) showed persistent hypercellularity compared to littermate controls (db/+) indicative of prolonged inflammation. Normal skin strain of db/+ and db/db were asynchronous. In db/db, severe strain acquired during the early inflammatory phase persisted with a slower recovery of elasticity compared to that of non-diabetics. This study showcases a versatile clinically relevant imaging platform suitable for real-time analyses of functional wound healing.


Assuntos
Diagnóstico por Imagem/métodos , Ultrassonografia/métodos , Animais , Fenômenos Biomecânicos , Feminino , Hemodinâmica/fisiologia , Imageamento Tridimensional/métodos , Camundongos , Gravidez , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa