Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
J Pept Sci ; 30(6): e3560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38262069

RESUMO

The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.


Assuntos
Aminoácidos , Peptídeos Antimicrobianos , Aminoácidos/química , Aminoácidos/metabolismo , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Técnicas de Síntese em Fase Sólida/métodos , Testes de Sensibilidade Microbiana
2.
Bioorg Chem ; 147: 107334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583251

RESUMO

Building upon our previous study on peptoid-based antibacterials which showed good activity against Gram-positive bacteria only, herein we report the synthesis of 34 dimeric peptoid compounds and the investigation of their activity against Gram-positive and Gram-negative pathogens. The newly designed peptoids feature a di-hydrophobic moiety incorporating phenyl, bromo-phenyl, and naphthyl groups, combined with variable lengths of cationic units such as amino and guanidine groups. The study also underscores the pivotal interplay between hydrophobicity and cationicity in optimizing efficacy against specific bacteria. The bromophenyl dimeric guanidinium peptoid compound 10j showed excellent activity against S. aureus 38 and E. coli K12 with MIC of 0.8 µg mL-1 and 6.2 µg mL-1, respectively. Further investigation into the mechanism of action revealed that the antibacterial effect might be attributed to the disruption of bacterial cell membranes, as suggested by tethered bilayer lipid membranes (tBLMs) and cytoplasmic membrane permeability studies. Notably, these promising antibacterial agents exhibited negligible toxicity against mammalian red blood cells. Additionally, the study explored the potential of 12 active compounds to disrupt established biofilms of S. aureus 38. The most effective biofilm disruptors were ethyl and octyl-naphthyl guanidinium peptoids (10c and 10 k). These compounds 10c and 10 k disrupted the established biofilms of S. aureus 38 with 51 % at 4x MIC (MIC = 17.6 µg mL-1 and 11.2 µg mL-1) and 56 %-58 % at 8x MIC (MIC = 35.2 µg mL-1 and 22.4 µg mL-1) respectively. Overall, this research contributes insights into the design principles of cationic dimeric peptoids and their antibacterial activity, with implications for the development of new antibacterial compounds.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Peptoides , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Peptoides/química , Peptoides/farmacologia , Peptoides/síntese química , Biofilmes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Dimerização , Escherichia coli/efeitos dos fármacos , Humanos , Eritrócitos/efeitos dos fármacos
3.
Exp Eye Res ; 235: 109615, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586456

RESUMO

The most common and chronic ocular problem of aging is dry eye disease (DED) and the associated condition of meibomian gland dysfunction (MGD). The resident ocular surface bacteria may have a role in maintaining homeostasis and perturbation may contribute to disease development. The aim of this study was to compare the microbiomes of the conjunctiva and eyelid margin in humans with mild and moderate DED and controls using 16 S rRNA gene sequencing. The conjunctiva and lid margin of three cohorts (N = 60; MGD, MGD with lacrimal dysfunction [MGD + LD] and controls) were swabbed bilaterally three times over three months. Microbial communities were analysed by extracting DNA and sequencing the V3-V4 region of the 16 S ribosomal RNA gene using the Illumina MiSeq platform. Sequences were quality filtered, clustered into amplicon sequence variants (ASVs) using UNOISE algorithm and taxonomically classified using a Bayesian Last Common Ancestor (BCLA) algorithm against the GTDB 2207 database. The overall microbial communities of the MGD, MGD + LD and control groups were significantly different from each other (P = 0.001). The MGD and MGD + LD dry eye groups showed greater variability between individuals compared to the control (PERMDISP, P < 0.01). There was decreased richness and diversity in females compared to males for the conjunctiva (P < 0.04) and eyelid margin (P < 0.018). The conjunctiva in the MGD + LD group had more abundant Pseudomonas azotoformans, P. oleovorans and Caballeronia zhejiangensis compared to MGD and control (P < 0.05), while the MGD group had more abundant Corynebacterium macginleyi and C. kroppenstedtii compared to control (P < 0.05). The lid margin in MGD was more abundant in C. macginleyi, C. accolens, and C. simulans compared to the MGD + LD and control (P < 0.05). There were differences in the overall microbial community composition and certain taxa, including increased levels of lipophilic bacteria, on the conjunctiva and eyelid margin in mild to moderate DED/MGD compared to controls. DED/MGD was also associated with a reduced bacterial richness and diversity in females.


Assuntos
Síndromes do Olho Seco , Doenças Palpebrais , Disfunção da Glândula Tarsal , Microbiota , Humanos , Masculino , Feminino , Glândulas Tarsais , Teorema de Bayes , Bactérias/genética , Lágrimas
4.
Exp Eye Res ; 235: 109636, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37657529

RESUMO

Meibomian gland dysfunction is one of the most common ocular diseases, with therapeutic treatment being primarily palliative due to our incomplete understanding of meibomian gland (MG) pathophysiology. To progress in vitro studies of human MG, this study describes a comprehensive protocol, with detailed troubleshooting, for the successful isolation, cultivation and cryopreservation of primary MG cells using biopsy-size segments of human eyelid tissue that would otherwise be discarded during surgery. MG acini were isolated and used to establish and propagate lipid-producing primary human MG cells. The primary cell viability during culture procedure was maintained through the application of Rho-associated coiled-coil containing protein kinase inhibitor (Y-27632, 10 µM) and collagen I from rat tails. Transcriptomic analysis of differentiated primary human MG cells confirmed cell origin and revealed high-level expression of many lipogenesis-related genes such as stearoyl-CoA desaturase (SCD), ELOVL Fatty Acid Elongase 1 (ELOVL1) and fatty acid synthase (FASN). Primary tarsal plate fibroblasts were also successfully isolated, cultured and cryopreserved. Established primary human MG cells and tarsal plate fibroblasts presented in this study have potential for applications in 3D models and bioengineered tissue that facilitate research in understanding of MG biology and pathophysiology.


Assuntos
Colágeno Tipo I , Glândulas Tarsais , Humanos , Animais , Ratos , Diferenciação Celular , Sobrevivência Celular , Criopreservação , Inibidores de Proteínas Quinases
5.
Bioorg Chem ; 130: 106226, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332317

RESUMO

It is well established that the quorum sensing (QS) in Pseudomonas aeruginosa is primarily responsible for the synthesis and the release of several virulence factors including pyocyanin and are involved in biofilm formation. In the Pseudomonas quinolone signal (PQS) system, autoinducers such as PQS and HHQ bind and activate the transcription regulator protein receptor PqsR (MvfR). Targeting PqsR with competitive inhibitors could be a promising strategy to inhibit QS in P. aeruginosa to overcome antimicrobial resistance. In this study, we have designed and synthesized a series of novel quinazolinone disulfide-containing competitive inhibitor of PqsR. The most potent analogue 8q efficiently inhibited the pqs system with an IC50 value of 4.5 µM. It also showed complete suppression of pyocyanin production and a significant reduction in biofilm formation by P. aeruginosa (PAO1) with low cytotoxicity. Additionally, 8q produced synergy in combination with known antibiotics such as ciprofloxacin and tobramycin. Finally, molecular docking analysis suggested that compound 8q could bind with the ligand-binding domain of PqsR in a similar fashion to the native ligand.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/fisiologia , Piocianina , Ligantes , Simulação de Acoplamento Molecular , Quinazolinonas/farmacologia , Quinazolinonas/metabolismo , Dissulfetos/farmacologia , Biofilmes , Proteínas de Bactérias/metabolismo
6.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834415

RESUMO

Bacteria readily acquire resistance to traditional antibiotics, resulting in pan-resistant strains with no available treatment. Antimicrobial resistance is a global challenge and without the development of effective antimicrobials, the foundation of modern medicine is at risk. Combination therapies such as antibiotic-antibiotic and antibiotic-adjuvant combinations are strategies used to combat antibiotic resistance. Current research focuses on antimicrobial peptidomimetics as adjuvant compounds, due to their promising activity against antibiotic-resistant bacteria. Here, for the first time we demonstrate that antibiotic-peptidomimetic combinations mitigate the development of antibiotic resistance in Staphylococcus aureus and Pseudomonas aeruginosa. When ciprofloxacin and gentamicin were passaged individually at sub-inhibitory concentrations for 10 days, the minimum inhibitory concentrations (MICs) increased up to 32-fold and 128-fold for S. aureus and P. aeruginosa, respectively. In contrast, when antibiotics were passaged in combination with peptidomimetics (Melimine, Mel4, RK758), the MICs of both antibiotics and peptidomimetics remained constant, indicating these combinations were able to mitigate the development of antibiotic-resistance. Furthermore, antibiotic-peptidomimetic combinations demonstrated synergistic activity against both Gram-positive and Gram-negative bacteria, reducing the concentration needed for bactericidal activity. This has significant potential clinical applications-including preventing the spread of antibiotic-resistant strains in hospitals and communities, reviving ineffective antibiotics, and lowering the toxicity of antimicrobial chemotherapy.


Assuntos
Anti-Infecciosos , Peptidomiméticos , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Peptidomiméticos/farmacologia , Gentamicinas/farmacologia , Staphylococcus aureus , Staphylococcus , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Pseudomonas aeruginosa , Bactérias , Testes de Sensibilidade Microbiana
7.
J Mol Evol ; 90(3-4): 227-230, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35362781

RESUMO

Self-replicating proteins or prions deviate from the central dogma of replication. The discovery of prion-like domains in coronavirus SARS-CoV-2 suggests their possible role in viral evolution. Here, we have outlined the possible role of self-replicating protein-like domains in the emergence of novel viruses. Further studies are needed to understand the function of these viral self-replicating protein-like domains and whether they could be antiviral target(s) for the development of effective antiviral agents in the future.


Assuntos
COVID-19 , Príons , Vírus , Antivirais , Humanos , Príons/genética , Domínios Proteicos , SARS-CoV-2
8.
J Cardiovasc Electrophysiol ; 33(5): 831-842, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174572

RESUMO

INTRODUCTION: A wearable cardioverter defibrillator (WCD) is indicated in appropriate patients to reduce the risk for sudden cardiac death. Challenges for patients wearing a WCD have been frequent false shock alarms primarily due to electrocardiogram noise and wear discomfort. The objective of this study was to test a contemporary WCD designed for reduced false shock alarms and improved comfort. METHODS: One hundred and thirty patients with left ventricular ejection fraction ≤40% and an active implantable cardioverter defibrillator (ICD) were fitted with the ASSURE WCD (Kestra Medical Technologies) and followed for 30 days. WCD detection was enabled and shock alarm markers recorded, but shocks and shock alarms were disabled. All WCD episodes and ICD ventricular tachycardia/ventricular fibrillation (VT/VF) episodes were adjudicated. The primary endpoint was the false-positive shock alarm rate with a performance goal of 1 every 3.4 days (0.29 per patient-day). RESULTS: Of 163 WCD episodes, 4 were VT/VF and 159 non-VT/VF (121 rhythms with noise, 32 uncertain with noise, 6 atrial flutter without noise). Only three false-positive shock alarm markers were recorded; one false-positive shock alarm every 1333 patient-days (0.00075 per patient-day, 95% confidence interval: 0.00015-0.00361; p < .001). No ICD recorded VT/VF episodes meeting WCD detection criteria (≥170 bpm for ≥20 s) were missed by the WCD during 3501 patient-days of use. Median wear was 31.0 days (interquartile range [IQR] 2.0) and median daily use 23.0 h (IQR 1.7). Adverse events were mostly mild: skin irritation (19.4%) and musculoskeletal discomfort (8.5%). CONCLUSION: The ASSURE WCD demonstrated a low false-positive shock alarm rate, low patient-reported discomfort, and no serious adverse events.


Assuntos
Desfibriladores Implantáveis , Dispositivos Eletrônicos Vestíveis , Arritmias Cardíacas , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Desfibriladores , Cardioversão Elétrica/efeitos adversos , Eletrocardiografia , Humanos , Volume Sistólico , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/terapia , Função Ventricular Esquerda
9.
Exp Eye Res ; 220: 109130, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654116

RESUMO

The human face/head supports a highly diverse population of microorganisms across a diverse range of microhabitats. This biogeographical diversity has given rise to selection pressure resulting in the formation of distinct bacterial communities between sites. This review investigates the similarity and differences of microbiomes across the different biogeographies of the human face and discusses a potential pathway for microbial circulation within individuals and within a population to maintain microbiome niches and diversity.


Assuntos
Microbiota , Bactérias/genética , Olho , Humanos , RNA Ribossômico 16S
10.
Exp Eye Res ; 218: 108973, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35149082

RESUMO

Ocular surface neuropeptides are vital molecules primarily involved in maintaining ocular surface integrity and homeostasis. They also serve as communication channels between the nervous system and the immune system, maintaining the homeostasis of the ocular surface. Tear film and ocular surface neuropeptides have a role in disease often due to abnormalities in their synthesis (either high or low production), signaling through defective receptors, or both. This creates imbalances in otherwise normal physiological processes. They have been observed to be altered in many ocular surface and systemic diseases including dry eye disease, ocular allergy, keratoconus, LASIK-induced dry eye, pterygium, neurotrophic keratitis, corneal graft rejection, microbial keratitis, headaches and diabetes. This review examines the characteristics of neuropeptides, their synthesis and their signaling through G-protein coupled receptors. The review also explores the types of neuropeptides within the tears and ocular surface, and how they change in ocular and systemic diseases.


Assuntos
Síndromes do Olho Seco , Ceratite , Neuropeptídeos , Pterígio , Humanos , Lágrimas
11.
BMC Infect Dis ; 22(1): 757, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175838

RESUMO

INTRODUCTION: Acanthamoeba is an emerging pathogen, infamous for its resilience against antiprotozoal compounds, disinfectants and harsh environments. It is known to cause keratitis, a sight-threatening, painful and difficult to treat corneal infection which is often reported among contact lens wearers and patients with ocular trauma. Acanthamoeba comprises over 24 species and currently 23 genotypes (T1-T23) have been identified. AIMS: This retrospective study was designed to examine the Acanthamoeba species and genotypes recovered from patients with Acanthamoeba keratitis (AK), determine the presence of endosymbionts in ocular isolates of Acanthamoeba and review the clinical presentations. METHODOLOGY: Thirteen culture-confirmed AK patients treated in a tertiary eye care facility in Hyderabad, India from February to October 2020 were included in this study. The clinical manifestations, medications and visual outcomes of all patients were obtained from medical records. The Acanthamoeba isolates were identified by sequencing the ribosomal nuclear subunit (rns) gene. Acanthamoeba isolates were assessed for the presence of bacterial or fungal endosymbionts using molecular assays, PCR and fluorescence in situ hybridization (FISH). RESULTS: The mean age of the patients was 33 years (SD ± 17.4; 95% CI 22.5 to 43.5 years). Six (46.2%) cases had AK associated risk factors; four patients had ocular trauma and two were contact lens wearers. A. culbertsoni (6/13, 46.2%) was the most common species, followed by A. polyphaga and A. triangularis. Most of the isolates (12/13) belonged to genotype T4 and one was a T12; three sub-clusters T4A, T4B, and T4F were identified within the T4 genotype. There was no significant association between Acanthamoeba types and clinical outcomes. Eight (61.5%) isolates harboured intracellular bacteria and one contained Malassezia restricta. The presence of intracellular microbes was associated with a higher proportion of stromal infiltrates (88.9%, 8/9), epithelial defect (55.6%, 5/9) and hypopyon (55.6%, 5/9) compared to 50% (2/4), 25% (1/4) and 25% (1/4) AK cases without intracellular microbes, respectively. CONCLUSIONS: Genotype T4 was the predominant isolate in southern India. This is the second report of T12 genotype identified from AK patient in India, which is rarely reported worldwide. The majority of the Acanthamoeba clinical isolates in this study harboured intracellular microbes, which may impact clinical characteristics of AK.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba , Desinfetantes , Infecções Oculares , Acanthamoeba/genética , Genótipo , Humanos , Hibridização in Situ Fluorescente , Estudos Retrospectivos
12.
Biofouling ; 38(1): 84-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016572

RESUMO

The aim of this study was to evaluate a new digestion method to quantify protein deposition on contact lenses. Four silicone hydrogel and one hydrogel contact lens material were incubated in lactoferrin, lysozyme, immunoglobulin A, and bovine serum albumin solutions at approximate physiological concentrations and temperature. Immobilized trypsin was used to digest the protein deposits from the contact lens surfaces. The total protein absorbed to lenses was extracted and digested using sequencing grade trypsin. The tryptic peptides were quantified using selected reaction monitoring mass spectrometry. The concentration of surface protein deposits was either lower than or the same as the total protein for all lens types and proteins. Immobilised trypsin can digest protein deposits from the surface of contact lenses. This ability to analyse the amount of protein at a contact lens surface may help in elucidating the effect of surface deposition on clinical outcomes during lens wear.


Assuntos
Biofilmes , Lentes de Contato , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis/química , Soroalbumina Bovina , Tripsina
13.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328373

RESUMO

The prevention and treatment of biofilm-mediated infections remains an unmet clinical need for medical devices. With the increasing prevalence of antibiotic-resistant infections, it is important that novel approaches are developed to prevent biofilms forming on implantable medical devices. This study presents a versatile and simple polydopamine surface coating technique for medical devices, using a new class of antibiotics-antimicrobial peptidomimetics. Their unique mechanism of action primes them for activity against antibiotic-resistant bacteria and makes them suitable for covalent attachment to medical devices. This study assesses the anti-biofilm activity of peptidomimetics, characterises the surface chemistry of peptidomimetic coatings, quantifies the antibacterial activity of coated surfaces and assesses the biocompatibility of these coated materials. X-ray photoelectron spectroscopy and water contact angle measurements were used to confirm the chemical modification of coated surfaces. The antibacterial activity of surfaces was quantified for S. aureus, E. coli and P. aeruginosa, with all peptidomimetic coatings showing the complete eradication of S. aureus on surfaces and variable activity for Gram-negative bacteria. Scanning electron microscopy confirmed the membrane disruption mechanism of peptidomimetic coatings against E. coli. Furthermore, peptidomimetic surfaces did not lyse red blood cells, which suggests these surfaces may be biocompatible with biological fluids such as blood. Overall, this study provides a simple and effective antibacterial coating strategy that can be applied to biomaterials to reduce biofilm-mediated infections.


Assuntos
Anti-Infecciosos , Peptidomiméticos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli , Indóis , Peptidomiméticos/farmacologia , Polímeros , Pseudomonas aeruginosa , Staphylococcus aureus
14.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563014

RESUMO

There is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics. The synthesis of cholic acid analogues involves the attachment of a hydrophobic moiety at the carboxyl terminal of the cholic acid scaffold, followed by the installation of one to three amino acid residues on the hydroxyl groups present on the cholic acid scaffold. Structure-activity relationship studies suggest that the tryptophan moiety is important for high antibacterial activity. Moreover, a minimum of +2 charge is also important for antimicrobial activity. In particular, analogues containing lysine-like residues showed the highest antibacterial potency against Gram-positive S. aureus. All di-substituted analogues possess high antimicrobial activity against both Gram-positive S. aureus as well as Gram-negative E. coli and P. aeruginosa. Analogues 17c and 17d with a combination of these features were found to be the most potent in this study. These compounds were able to depolarise the bacterial membrane, suggesting that they are potential antimicrobial pore forming agents.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Peptídeos Antimicrobianos , Ácido Cólico/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Relação Estrutura-Atividade
15.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208954

RESUMO

Quorum-sensing (QS) systems of Pseudomonas aeruginosa are involved in the control of biofilm formation and virulence factor production. The current study evaluated the ability of halogenated dihydropyrrol-2-ones (DHP) (Br (4a), Cl (4b), and F (4c)) and a non-halogenated version (4d) to inhibit the QS receptor proteins LasR and PqsR. The DHP molecules exhibited concentration-dependent inhibition of LasR and PqsR receptor proteins. For LasR, all compounds showed similar inhibition levels. However, compound 4a (Br) showed the highest decrease (two-fold) for PqsR, even at the lowest concentration (12.5 µg/mL). Inhibition of QS decreased pyocyanin production amongst P. aeruginosa PAO1, MH602, ATCC 25619, and two clinical isolates (DFU-53 and 364707). In the presence of DHP, P. aeruginosa ATCC 25619 showed the highest decrease in pyocyanin production, whereas clinical isolate DFU-53 showed the lowest decrease. All three halogenated DHPs also reduced biofilm formation by between 31 and 34%. The non-halogenated compound 4d exhibited complete inhibition of LasR and had some inhibition of PqsR, pyocyanin, and biofilm formation, but comparatively less than halogenated DHPs.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepção de Quorum/efeitos dos fármacos , Piocianina/análogos & derivados , Piocianina/síntese química , Piocianina/química , Piocianina/farmacologia
16.
Exp Eye Res ; 207: 108567, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848523

RESUMO

PURPOSE: This study explored whether the non-polar lipids in the human tear fluid lipidome show diurnal variation with and without contact lens wear. It also addressed the relationship between changes in ocular comfort during the day with the level of non-polar lipids. METHODS: Tear samples were collected in the morning and evening with and without contact lenses using fine glass capillary tubes and were analysed by chip-based nano-electrospray ionization tandem mass spectrometric techniques. Tear levels of cholesteryl esters (CE), wax esters (WE) and triacylglycerides (TAG) were quantified. RESULTS: TAG 48:0, 52:0 and WE 26:0/16:0, and 27:0/17:0 increased from morning to evening. TAG 52:2, WE 21:0/16:0, 21:0/18:1 and 28:0/18:1 decreased during the day when no lenses were worn. CE 21:0 was the only non-polar lipid that increased from morning to evening in contact lens wear. WE 21:0/16:0 and 27:0/17:0 were lower in the morning in contact lens wear compared to no lens wear (p ≤ 0.05). The level of non-polar lipids did not correlate with ocular comfort at the end of the day. CONCLUSION: Even though the level of some of non-polar lipid species changed from morning to evening the total level of major tear non-polar lipids remained unchanged during the day with and without contact lens wear. The effect of change in the quantity and structure of lipid species on tear stability and ocular comfort warrants more investigation.


Assuntos
Ésteres do Colesterol/metabolismo , Ritmo Circadiano/fisiologia , Lentes de Contato Hidrofílicas/estatística & dados numéricos , Metabolismo dos Lipídeos/fisiologia , Lágrimas/metabolismo , Triglicerídeos/metabolismo , Ceras/metabolismo , Adulto , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Adulto Jovem
17.
Exp Eye Res ; 207: 108609, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33932398

RESUMO

Animal models are a critical element of ocular surface research for investigating therapeutic drops, surgical implants, and infection research. This study was a comparative analysis of the microbial communities on conjunctival tissue samples from humans compared to several commonly used laboratory animals (BALB/c mice, New Zealand white rabbits and IMVS colored stock guinea pigs). Microbial communities were analyzed by extracting total DNA from conjunctival tissue and sequencing the 16 S rRNA gene using the Illumina MiSeq platform. Sequences were quality filtered using the UNOISE pipeline in USEARCH and taxonomically classified using GTDB database. Sequences associated with blank extraction and sampling negative controls were removed with the decontam R software package prior to downstream analysis. There was a difference in the diversity measures of richness (P = 0.0124) and Shannon index (P = 0.0002) between humans and rabbits but not between human, mouse and guinea pigs. There was a difference between the human and any animal for bacterial community structure (P = 0.006). There was a higher degree of similarity between the bacterial composition of the human and mouse samples with each dominated by the phyla Proteobacteria and Firmicutes. The use of mouse models may be more appropriate for studies investigating changes to the ocular microbiome due to interventions such as application of antibiotics due to greater similarities in bacterial community structure and composition to humans.


Assuntos
Bactérias/isolamento & purificação , Túnica Conjuntiva/microbiologia , DNA Bacteriano/genética , Microbiota/genética , Adolescente , Adulto , Animais , Feminino , Cobaias , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Animais , RNA Ribossômico 16S/genética , Coelhos , Análise de Sequência de DNA , Adulto Jovem
18.
Exp Eye Res ; 210: 108719, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34364889

RESUMO

Two spectrophotometric microplate assays with dual staining for either fluorescent Nile red (NR) plus 4,6-diamidino-2-phenylindole (DAPI) or non-fluorescent Oil red O (ORO) plus Crystal violet (CV) were applied and optimised to evaluate the lipid producing capacity of immortalised human meibomian gland epithelial cells (iHMGEC). Cells were treated with rosiglitazone (Rosi, 10-50 µM), a known lipid producing inducer for iHMGEC, and were analysed for lipids using the NR-DAPI and ORO-CV microplate assays. The lipid producing capacity of iHMGEC after each treatment was determined by normalising lipid quantity (measured with NR or ORO) to cell number (measured with DAPI or CV). The dye concentrations of NR 1 µg/mL, DAPI 5 µg/mL, ORO 0.3% (v/v) and CV 0.5% (v/v), provided optimal linearity and coverage of signals over a range of cell densities (corresponding to 10-100% cell confluence). Both NR-DAPI and ORO-CV showed a dose-dependent effect of Rosi on lipid production in iHMGEC, consistent with the results reported previously using traditional microscopic imaging methods. The microplate assays offer a rapid, high throughput and objective measurement of the amount of lipids in iHMGEC (and potentially other lipid-producing cells) and can be used for screening the effects of biological agents or incubation changes on lipid production in cells in future studies.


Assuntos
Células Epiteliais/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Lipídeos/biossíntese , Glândulas Tarsais/efeitos dos fármacos , Rosiglitazona/farmacologia , Contagem de Células , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Epiteliais/metabolismo , Corantes Fluorescentes , Humanos , Glândulas Tarsais/metabolismo , Coloração e Rotulagem
19.
Exp Eye Res ; 205: 108504, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610601

RESUMO

Corneal infection caused by a bacteria Pseudomonas aeruginosa is common cause of ocular morbidity. Increasing antibiotic resistance by ocular P. aeruginosa is an emerging concern. In this study the resistome of ocular isolates of Pseudomonas aeruginosa clone ST308 isolated in India in 1997 (PA31, PA32, PA33, PA35 and PA37) and 2018 (PA198 and PA219) were investigated. All the isolates of ST308 had >95% nucleotide similarity. The isolates from 2018 had larger genomes, coding sequences, accessory and pan genes compared to the older isolates from 1997. The 2018 isolate PA219 was resistant to all antibiotics except polymyxin B, while the 2018 isolate PA198 was resistant to ciprofloxacin, levofloxacin, gentamicin and tobramycin. Among the isolates from 1997, five were resistant to gentamicin, tobramycin and ciprofloxacin, four were resistant to levofloxacin while two were resistant to polymyxin B. Twenty-four acquired resistance genes were present in the 2018 isolates compared to 11 in the historical isolates. All isolates contained genes encoding for aminoglycoside (aph(6)-Id, aph(3')-lIb, aph(3″)-Ib), beta-lactam (blaPAO), tetracycline (tet(G)), fosfomycin (fosA), chloramphenicol (catB7), sulphonamide (sul1), quaternary ammonium (qacEdelta1) and fluoroquinolone (crpP) resistance. Isolate PA198 possessed aph(3')-VI, rmtD2, qnrVC1, blaOXA-488, blaPME-1, while PA219 possessed aadA1, rmtB, qnrVC1, aac(6')-Ib-cr, blaTEM-1B, blaVIM-2, blaPAO-1, mph(E), mph(A), msr(E). In both recent isolates qnrVC1 was present in Tn3 transposon. In 219 blaTEM-1 was carried on a transposon and blaOXA-10 on a class 1 integron. There were no notable differences in the number of single nucleotide polymorphisms, but recent isolates carried more insertions and deletions in their genes. These findings suggest that genomes of P. aeruginosa ocular clonal strains with >95% nucleotide identity isolated twenty years apart had changed over time with the acquisition of resistance genes. The pattern of gene mutations also varied with more insertions and deletions in their chromosomal genes which confer resistance to antibiotics.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética , Polimorfismo de Nucleotídeo Único , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Antibacterianos/farmacologia , Doenças da Córnea/microbiologia , DNA Bacteriano/genética , Infecções Oculares Bacterianas/microbiologia , Humanos , Índia , Testes de Sensibilidade Microbiana , Tipagem Molecular , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Fatores de Tempo , Sequenciamento Completo do Genoma
20.
Biofouling ; 37(8): 862-878, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34615411

RESUMO

The aim of this study was to develop an experimental methodology to measure lipid deposition with contact lenses. Contact lenses were incubated in a lipid solution. The amount and types of adsorbed lipids were assessed using mass spectrometry and confocal microscopy. The recovery of lipids from lenses varied with lipid and lens type. Most non-polar and polar lipids were desorbed from lenses during the first 5 min of extraction. Fluorescently labelled phosphatidylcholine bound within the matrix of Senofilcon A lenses but to the surface of Lotrafilcon B lenses, whereas fluorescently labelled cholesteryl ester was found throughout both lenses. The efficacy of extraction of lipids from contact lenses varies for different lipid classes and different lens materials. Differences in the amount and time of lipid desorption probably resulted from the strength of the bond between lipid and lens polymer and the depth of adsorption of lipid in the polymer.


Assuntos
Lentes de Contato Hidrofílicas , Adsorção , Hidrogel de Polietilenoglicol-Dimetacrilato , Hidrogéis , Lipídeos , Silicones
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa