Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 212 Suppl 2: S414-24, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26063224

RESUMO

We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced.


Assuntos
Filoviridae/imunologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos/métodos , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Macaca fascicularis , Marburgvirus/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Raiva/virologia , Sudão , Vacinação/métodos , Células Vero
2.
PLoS Pathog ; 9(5): e1003389, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737747

RESUMO

We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Imunoglobulina G/imunologia , Vacina Antirrábica , Vírus da Raiva , Proteínas da Matriz Viral , Animais , Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/farmacologia , Ebolavirus/genética , Ebolavirus/imunologia , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Macaca mulatta , Masculino , Camundongos , Vacina Antirrábica/genética , Vacina Antirrábica/imunologia , Vacina Antirrábica/farmacologia , Vírus da Raiva/genética , Vírus da Raiva/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/farmacologia
3.
Mol Ther Methods Clin Dev ; 24: 20-29, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34977269

RESUMO

Extensive clinical data from liver-mediated gene therapy trials have shown that dose-dependent immune responses against the vector capsid may impair or even preclude transgene expression if not managed successfully with prompt immune suppression. The goal of this preclinical study was to generate an adeno-associated viral (AAV) vector capable of expressing therapeutic levels of B-domain deleted factor VIII (FVIII) at the lowest possible vector dose to minimize the potential Risk of a capsid-mediated immune response in the clinical setting. Here, we describe the studies that identified the investigational agent SPK-8011, currently being evaluated in a phase 1/2 study (NCT03003533) in individuals with hemophilia A. In particular, the potency of our second-generation expression cassettes was evaluated in mice and in non-human primates using two different bioengineered capsids (AAV-Spark100 and AAV-Spark200). At 2 weeks after gene transfer, primates transduced with 2 × 1012 vg/kg AAV-Spark100-FVIII or AAV-Spark200-FVIII expressed FVIII antigen levels of 13% ± 2% and 22% ± 6% of normal, respectively. Collectively, these preclinical results validate the feasibility of lowering the AAV capsid dose for a gene-based therapeutic approach for hemophilia A to a dose level orders of magnitude lower than the first-generation vectors in the clinic.

4.
Mol Ther Methods Clin Dev ; 1: 14046, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26015984

RESUMO

Botulinum neurotoxins are one of the most potent toxins found in nature, with broad medical applications from cosmetics to the treatment of various neuropathies. Additionally, these toxins are classified as Category A-Tier 1 agents, with human lethal doses calculated at as little as 90 ng depending upon the route of administration. Of the eight distinct botulinum neurotoxin serotypes, the most common causes of human illness are from serotypes /A, /B, and /E. Protection can be achieved by eliciting antibody responses against the receptor-binding domain of the neurotoxin. Our previous research has shown that recombinant rabies virus-based particles can effectively present heterologous antigens. Here, we describe a novel strategy using recombinant rabies virus particles that elicits a durable humoral immune response against the botulinum neurotoxin receptor binding domains from serotypes /A, /B, and /E. Following intramuscular administration of ß-propiolactone-inactivated rabies virus particles, mice elicited specific immune responses against the cognate antigen. Administration of a combination of these vectors also demonstrated antibody responses against all three serotypes based on enzyme-linked immunosorbent assay (ELISA) measurements, with minimal decay within the study timeline. Complete protection was achieved against toxin challenge from the serotypes /A and /B and partial protection for /E, indicating that a multivalent approach is feasible.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa