Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(22): 13143-13154, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484094

RESUMO

Understanding how modifications to the ribosome affect function has implications for studying ribosome biogenesis, building minimal cells, and repurposing ribosomes for synthetic biology. However, efforts to design sequence-modified ribosomes have been limited because point mutations in the ribosomal RNA (rRNA), especially in the catalytic active site (peptidyl transferase center; PTC), are often functionally detrimental. Moreover, methods for directed evolution of rRNA are constrained by practical considerations (e.g. library size). Here, to address these limitations, we developed a computational rRNA design approach for screening guided libraries of mutant ribosomes. Our method includes in silico library design and selection using a Rosetta stepwise Monte Carlo method (SWM), library construction and in vitro testing of combined ribosomal assembly and translation activity, and functional characterization in vivo. As a model, we apply our method to making modified ribosomes with mutant PTCs. We engineer ribosomes with as many as 30 mutations in their PTCs, highlighting previously unidentified epistatic interactions, and show that SWM helps identify sequences with beneficial phenotypes as compared to random library sequences. We further demonstrate that some variants improve cell growth in vivo, relative to wild type ribosomes. We anticipate that SWM design and selection may serve as a powerful tool for rRNA engineering.


Assuntos
Peptidil Transferases , Ribossomos , Domínio Catalítico , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , Peptidil Transferases/metabolismo , Mutação , Proteínas Ribossômicas/genética , RNA Ribossômico 23S/metabolismo
2.
Biotechnol Bioprocess Eng ; : 1-17, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778039

RESUMO

A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.

3.
ACS Cent Sci ; 10(4): 871-881, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38680563

RESUMO

The biosynthetic capability of the bacterial ribosome motivates efforts to understand and harness sequence-optimized versions for synthetic biology. However, functional differences between natively occurring ribosomal RNA (rRNA) operon sequences remain poorly characterized. Here, we use an in vitro ribosome synthesis and translation platform to measure protein production capabilities of ribosomes derived from all unique combinations of 16S and 23S rRNAs from seven distinct Escherichia coli rRNA operon sequences. We observe that polymorphisms that distinguish native E. coli rRNA operons lead to significant functional changes in the resulting ribosomes, ranging from negligible or low gene expression to matching the protein production activity of the standard rRNA operon B sequence. We go on to generate strains expressing single rRNA operons and show that not only do some purified in vivo expressed homogeneous ribosome pools outperform the wild-type, heterogeneous ribosome pool but also that a crude cell lysate made from the strain expressing only operon A ribosomes shows significant yield increases for a panel of medically and industrially relevant proteins. We anticipate that ribosome pool engineering can be applied as a tool to increase yields across many protein biomanufacturing systems, as well as improve basic understanding of ribosome heterogeneity and evolution.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa