Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Nature ; 620(7976): 1047-1053, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37459895

RESUMO

Zygotic genome activation (ZGA) activates the quiescent genome to enable the maternal-to-zygotic transition1,2. However, the identity of transcription factors that underlie mammalian ZGA in vivo remains elusive. Here we show that OBOX, a PRD-like homeobox domain transcription factor family (OBOX1-OBOX8)3-5, are key regulators of mouse ZGA. Mice deficient for maternally transcribed Obox1/2/5/7 and zygotically expressed Obox3/4 had a two-cell to four-cell arrest, accompanied by impaired ZGA. The Obox knockout defects could be rescued by restoring either maternal and zygotic OBOX, which suggests that maternal and zygotic OBOX redundantly support embryonic development. Chromatin-binding analysis showed that Obox knockout preferentially affected OBOX-binding targets. Mechanistically, OBOX facilitated the 'preconfiguration' of RNA polymerase II, as the polymerase relocated from the initial one-cell binding targets to ZGA gene promoters and distal enhancers. Impaired polymerase II preconfiguration in Obox mutants was accompanied by defective ZGA and chromatin accessibility transition, as well as aberrant activation of one-cell polymerase II targets. Finally, ectopic expression of OBOX activated ZGA genes and MERVL repeats in mouse embryonic stem cells. These data thus demonstrate that OBOX regulates mouse ZGA and early embryogenesis.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio , Fatores de Transcrição , Zigoto , Animais , Camundongos , Cromatina/genética , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Genoma/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
2.
PLoS Biol ; 21(10): e3002334, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856394

RESUMO

Tissue development entails genetically programmed differentiation of immature cell types to mature, fully differentiated cells. Exposure during development to non-mutagenic environmental factors can contribute to cancer risk, but the underlying mechanisms are not understood. We used a mouse model of endometrial adenocarcinoma that results from brief developmental exposure to an estrogenic chemical, diethylstilbestrol (DES), to determine causative factors. Single-cell RNA sequencing (scRNAseq) and spatial transcriptomics of adult control uteri revealed novel markers of uterine epithelial stem cells (EpSCs), identified distinct luminal and glandular progenitor cell (PC) populations, and defined glandular and luminal epithelium (LE) cell differentiation trajectories. Neonatal DES exposure disrupted uterine epithelial cell differentiation, resulting in a failure to generate an EpSC population or distinguishable glandular and luminal progenitors or mature cells. Instead, the DES-exposed epithelial cells were characterized by a single proliferating PC population and widespread activation of Wnt/ß-catenin signaling. The underlying endometrial stromal cells had dramatic increases in inflammatory signaling pathways and oxidative stress. Together, these changes activated phosphoinositide 3-kinase/AKT serine-threonine kinase signaling and malignant transformation of cells that were marked by phospho-AKT and the cancer-associated protein olfactomedin 4. Here, we defined a mechanistic pathway from developmental exposure to an endocrine disrupting chemical to the development of adult-onset cancer. These findings provide an explanation for how human cancers, which are often associated with abnormal activation of PI3K/AKT signaling, could result from exposure to environmental insults during development.


Assuntos
Adenocarcinoma , Fosfatidilinositol 3-Quinases , Animais , Feminino , Camundongos , Adenocarcinoma/induzido quimicamente , beta Catenina/genética , beta Catenina/metabolismo , Diferenciação Celular , Estrogênios , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Útero
3.
Nucleic Acids Res ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39166489

RESUMO

Chromatin changes in response to estrogen and progesterone are well established in cultured cells, but how they control gene expression under physiological conditions is largely unknown. To address this question, we examined in vivo estrous cycle dynamics of mouse uterus hormone receptor occupancy, chromatin accessibility and chromatin structure by combining RNA-seq, ATAC-seq, HiC-seq and ChIP-seq. Two estrous cycle stages were chosen for these analyses, diestrus (highest estrogen) and estrus (highest progesterone). Unexpectedly, rather than alternating with each other, estrogen receptor alpha (ERα) and progesterone receptor (PGR) were co-bound during diestrus and lost during estrus. Motif analysis of open chromatin followed by hypoxia inducible factor 2A (HIF2A) ChIP-seq and conditional uterine deletion of this transcription factor revealed a novel role for HIF2A in regulating diestrus gene expression patterns that were independent of either ERα or PGR binding. Proteins in complex with ERα included PGR and cohesin, only during diestrus. Combined with HiC-seq analyses, we demonstrate that complex chromatin architecture changes including enhancer switching are coordinated with ERα and PGR co-binding during diestrus and non-hormone receptor transcription factors such as HIF2A during estrus to regulate most differential gene expression across the estrous cycle.

4.
Biol Reprod ; 107(6): 1439-1451, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36130203

RESUMO

Egg activation in mammals is triggered by oscillations in egg intracellular calcium (Ca2+) level. Ca2+ oscillation patterns can be modified in vitro by changing the ionic composition of culture media or in vivo by conditions affecting mitochondrial function, such as obesity and inflammation. In mice, disruption of Ca2+ oscillations in vitro impacts embryo development and offspring growth. Here we tested the hypothesis that, even without in vitro manipulation, abnormal Ca2+ signaling following fertilization impacts offspring growth. Plasma membrane Ca2+ ATPases (PMCA) extrude cytosolic Ca2+ to restore Ca2+ homeostasis. To disrupt Ca2+ signaling in vivo, we conditionally deleted PMCA1 (cKO) in oocytes. As anticipated, in vitro fertilized cKO eggs had increased Ca2+ exposure relative to controls. To assess the impact on offspring growth, cKO females were mated to wild type males to generate pups that had high Ca2+ exposure at fertilization. Because these offspring would be heterozygous, we also tested the impact of global PMCA1 heterozygosity on offspring growth. Control heterozygous pups that had normal Ca2+ at fertilization were generated by mating wild type females to heterozygous males; these control offspring weighed significantly less than their wild type siblings. However, heterozygous offspring from cKO eggs (and high Ca2+ exposure) were larger than heterozygous controls at 12 week-of-age and males had altered body composition. Our results show that global PMCA1 haploinsufficiency impacts growth and support that abnormal Ca2+ signaling after fertilization in vivo has a long-term impact on offspring weight. These findings are relevant for environmental and medical conditions affecting Ca2+ handling and for design of culture conditions and procedures for domestic animal and human assisted reproduction.


Assuntos
Sinalização do Cálcio , Cálcio , Masculino , Feminino , Camundongos , Humanos , Animais , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Fertilização/fisiologia , Zigoto/metabolismo , Oócitos/metabolismo , Mamíferos/metabolismo
5.
EMBO J ; 36(21): 3175-3193, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29021282

RESUMO

Methionine metabolism is critical for epigenetic maintenance, redox homeostasis, and animal development. However, the regulation of methionine metabolism remains unclear. Here, we provide evidence that SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, is critically involved in modulating methionine metabolism, thereby impacting maintenance of mouse embryonic stem cells (mESCs) and subsequent embryogenesis. We demonstrate that SIRT1-deficient mESCs are hypersensitive to methionine restriction/depletion-induced differentiation and apoptosis, primarily due to a reduced conversion of methionine to S-adenosylmethionine. This reduction markedly decreases methylation levels of histones, resulting in dramatic alterations in gene expression profiles. Mechanistically, we discover that the enzyme converting methionine to S-adenosylmethionine in mESCs, methionine adenosyltransferase 2a (MAT2a), is under control of Myc and SIRT1. Consistently, SIRT1 KO embryos display reduced Mat2a expression and histone methylation and are sensitive to maternal methionine restriction-induced lethality, whereas maternal methionine supplementation increases the survival of SIRT1 KO newborn mice. Our findings uncover a novel regulatory mechanism for methionine metabolism and highlight the importance of methionine metabolism in SIRT1-mediated mESC maintenance and embryonic development.


Assuntos
Desenvolvimento Embrionário/genética , Epigênese Genética , Metionina Adenosiltransferase/genética , Metionina/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Sirtuína 1/genética , Acetilação , Animais , Apoptose , Diferenciação Celular , Embrião de Mamíferos , Histonas/genética , Histonas/metabolismo , Metabolômica , Metionina/administração & dosagem , Metionina Adenosiltransferase/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Células-Tronco Embrionárias Murinas/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , S-Adenosilmetionina/metabolismo , Sirtuína 1/deficiência
6.
J Genet Couns ; 30(6): 1737-1747, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34076301

RESUMO

Risk assessment in cancer genetic counseling is essential in identifying individuals at high risk for developing breast cancer to recommend appropriate screening and management options. Historically, many breast cancer risk prediction models were developed to calculate an individual's risk to develop breast cancer or to carry a pathogenic variant in the BRCA1 or BRCA2 genes. However, how or when genetic counselors use these models in clinical settings is currently unknown. We explored genetic counselors' breast cancer risk model usage patterns including frequency of use, reasons for using or not using models, and change in usage since the adoption of multi-gene panel testing. An online survey was developed and sent to members of the National Society of Genetic Counselors; board-certified genetic counselors whose practice included cancer genetic counseling were eligible to participate in the study. The response rate was estimated at 23% (243/1,058), and respondents were predominantly working in the United States. The results showed that 93% of all respondents use at least one breast cancer risk prediction model in their clinical practice. Among the six risk models selected for the study, the Tyrer-Cuzick (IBIS) model was used most frequently (95%), and the BOADICEA model was used least (40%). Determining increased or decreased surveillance and breast MRI eligibility were the two most common reasons for most model usage, while time consumption and difficulty in navigation were the two most common reasons for not using models. This study provides insight into perceived benefits and limitations of risk models in clinical use in the United States, which may be useful information for software developers, genetic counseling program curriculum developers, and currently practicing cancer genetic counselors.


Assuntos
Neoplasias da Mama , Conselheiros , Neoplasias da Mama/diagnóstico , Aconselhamento , Conselheiros/psicologia , Feminino , Genes BRCA2 , Aconselhamento Genético/psicologia , Testes Genéticos , Humanos , Estados Unidos
7.
Proc Natl Acad Sci U S A ; 115(44): E10370-E10378, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30322909

RESUMO

The success of mammalian development following fertilization depends on a series of transient increases in egg cytoplasmic Ca2+, referred to as Ca2+ oscillations. Maintenance of these oscillations requires Ca2+ influx across the plasma membrane, which is mediated in part by T-type, CaV3.2 channels. Here we show using genetic mouse models that TRPM7 channels are required to support this Ca2+ influx. Eggs lacking both TRPM7 and CaV3.2 stop oscillating prematurely, indicating that together they are responsible for the majority of Ca2+ influx immediately following fertilization. Fertilized eggs lacking both channels also frequently display delayed resumption of Ca2+ oscillations, which appears to require sperm-egg fusion. TRPM7 and CaV3.2 channels almost completely account for Ca2+ influx observed following store depletion, a process previously attributed to canonical store-operated Ca2+ entry mediated by STIM/ORAI interactions. TRPM7 serves as a membrane sensor of extracellular Mg2+ and Ca2+ concentrations and mediates the effects of these ions on Ca2+ oscillation frequency. When bred to wild-type males, female mice carrying eggs lacking TRPM7 and CaV3.2 are subfertile, and their offspring have increased variance in postnatal weight. These in vivo findings confirm previous observations linking in vitro experimental alterations in Ca2+ oscillatory patterns with developmental potential and offspring growth. The identification of TRPM7 and CaV3.2 as key mediators of Ca2+ influx following fertilization provides a mechanistic basis for the rational design of culture media that optimize developmental potential in research animals, domestic animals, and humans.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Fertilização/fisiologia , Canais de Cátion TRPM/metabolismo , Zigoto/metabolismo , Animais , Membrana Celular/metabolismo , Citoplasma/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/metabolismo , Espermatozoides/metabolismo , Molécula 1 de Interação Estromal/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(18): E4189-E4198, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29666266

RESUMO

Early transient developmental exposure to an endocrine active compound, diethylstilbestrol (DES), a synthetic estrogen, causes late-stage effects in the reproductive tract of adult mice. Estrogen receptor alpha (ERα) plays a role in mediating these developmental effects. However, the developmental mechanism is not well known in male tissues. Here, we present genome-wide transcriptome and DNA methylation profiling of the seminal vesicles (SVs) during normal development and after DES exposure. ERα mediates aberrations of the mRNA transcriptome in SVs of adult mice following neonatal DES exposure. This developmental exposure impacts differential diseases between male (SVs) and female (uterus) tissues when mice reach adulthood due to most DES-altered genes that appear to be tissue specific during mouse development. Certain estrogen-responsive gene changes in SVs are cell-type specific. DNA methylation dynamically changes during development in the SVs of wild-type (WT) and ERα-knockout (αERKO) mice, which increases both the loss and gain of differentially methylated regions (DMRs). There are more gains of DMRs in αERKO compared with WT. Interestingly, the methylation changes between the two genotypes are in different genomic loci. Additionally, the expression levels of a subset of DES-altered genes are associated with their DNA methylation status following developmental DES exposure. Taken together, these findings provide an important basis for understanding the molecular and cellular mechanism of endocrine-disrupting chemicals (EDCs), such as DES, during development in the male mouse tissues. This unique evidence contributes to our understanding of developmental actions of EDCs in human health.


Assuntos
Metilação de DNA/efeitos dos fármacos , Dietilestilbestrol/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Estrogênios não Esteroides/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Glândulas Seminais/metabolismo , Transcriptoma/efeitos dos fármacos , Animais , Metilação de DNA/genética , Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Estrogênios não Esteroides/farmacologia , Loci Gênicos , Masculino , Camundongos , Camundongos Knockout
9.
Mol Hum Reprod ; 26(11): 797-800, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33022047

RESUMO

Most reproductive biologists who study female gametes will agree with the 16th century anatomist William Harvey's doctrine: 'Ex Ovo Omnia'. This phrase, which literally translates to 'everything from the egg', recognizes the centrality of the egg in animal development. Eggs are most impressive cells, capable of supporting development of an entirely new organism following fertilization or parthenogenetic activation. Not so uniformly embraced in the field of reproductive biology is the nomenclature used to refer to the female germ cell. What is an oocyte? What is an egg? Are these terms the same, different, interchangeable? Here we provide functional definitions of the oocyte and egg, and how they can be used in the context of mammalian gamete biology and beyond.


Assuntos
Células Germinativas/classificação , Oócitos/classificação , Óvulo/classificação , Animais , Feminino , Humanos , Mamíferos , Oogênese/fisiologia , Terminologia como Assunto
10.
Mol Reprod Dev ; 87(2): 284-292, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944466

RESUMO

Calcium (Ca2+ ) signals triggered at fertilization initiate resumption of the cell cycle and initial steps of embryonic development. In mammals, the sperm factor phospholipase Cζ triggers the release of Ca2+ from the endoplasmic reticulum (ER), initiating an oscillatory pattern of Ca2+ transients that is modulated by egg factors including Ca2+ influx channels, Ca2+ transporters, and phosphoinositide-regulating enzymes. Here we compared characteristics of Ca2+ oscillations following in vitro fertilization (IVF) and ER Ca2+ stores among nine common laboratory mouse strains: CF1, C57BL6, SJL, CD1, DBA, FVB, 129X1, BALBc, 129S1, and the F1 hybrid B6129SF1. Sperm from B6SJLF1/J males was used for all IVF experiments. There were significant differences among the strains with respect to duration and maximum amplitude of the first Ca2+ transient, frequency of oscillations, and ER Ca2+ stores. With male strain held constant, the differences in Ca2+ oscillation patterns observed result from variation in egg factors across different mouse strains. Our results support the importance of egg-intrinsic properties in determining Ca2+ oscillation patterns and have important implications for the interpretation and comparison of studies on Ca2+ dynamics at fertilization.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Desenvolvimento Embrionário/fisiologia , Fertilização in vitro/métodos , Oócitos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Espermatozoides/metabolismo
11.
Nucleic Acids Res ; 46(11): 5487-5503, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29648668

RESUMO

Little is known regarding how steroid hormone exposures impact the epigenetic landscape in a living organism. Here, we took a global approach to understanding how exposure to the estrogenic chemical, diethylstilbestrol (DES), affects the neonatal mouse uterine epigenome. Integration of RNA- and ChIP-sequencing data demonstrated that ∼80% of DES-altered genes had higher H3K4me1/H3K27ac signal in close proximity. Active enhancers, of which ∼3% were super-enhancers, had a high density of estrogen receptor alpha (ERα) binding sites and were correlated with alterations in nearby gene expression. Conditional uterine deletion of ERα, but not the pioneer transcription factors FOXA2 or FOXO1, prevented the majority of DES-mediated changes in gene expression and H3K27ac signal at target enhancers. An ERα dependent super-enhancer was located at the Padi gene locus and a topological connection to the Padi1 TSS was documented using 3C-PCR. Chromosome looping at this site was independent of ERα and DES exposure, indicating that the interaction is established prior to ligand signaling. However, enrichment of H3K27ac and transcriptional activation at this locus was both DES and ERα-dependent. These data suggest that DES alters uterine development and consequently adult reproductive function by modifying the enhancer landscape at ERα binding sites near estrogen-regulated genes.


Assuntos
Dietilestilbestrol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios não Esteroides/farmacologia , Regulação da Expressão Gênica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Útero/embriologia , Animais , Sítios de Ligação/genética , Receptor alfa de Estrogênio/genética , Estrogênios não Esteroides/metabolismo , Feminino , Proteína Forkhead Box O1/genética , Fator 3-beta Nuclear de Hepatócito/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Regiões Promotoras Genéticas/genética
12.
Biol Reprod ; 101(2): 306-317, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201420

RESUMO

Enhancer of zeste homolog 2 (EZH2) is a rate-limiting catalytic subunit of a histone methyltransferase, polycomb repressive complex, which silences gene activity through the repressive histone mark H3K27me3. EZH2 is critical for epigenetic effects of early estrogen treatment, and may be involved in uterine development and pathologies. We investigated EZH2 expression, regulation, and its role in uterine development/function. Uterine epithelial EZH2 expression was associated with proliferation and was high neonatally then declined by weaning. Pre-weaning uterine EZH2 expression was comparable in wild-type and estrogen receptor 1 knockout mice, showing neonatal EZH2 expression is ESR1 independent. Epithelial EZH2 was upregulated by 17ß-estradiol (E2) and inhibited by progesterone in adult uteri from ovariectomized mice. To investigate the uterine role of EZH2, we developed a EZH2 conditional knockout (Ezh2cKO) mouse using a cre recombinase driven by the progesterone receptor (Pgr) promoter that produced Ezh2cKO mice lacking EZH2 in Pgr-expressing tissues (e.g. uterus, mammary glands). In Ezh2cKO uteri, EZH2 was deleted neonatally. These uteri had reduced H3K27me3, were larger than WT, and showed adult cystic endometrial hyperplasia. Ovary-independent uterine epithelial proliferation and increased numbers of highly proliferative uterine glands were seen in adult Ezh2cKO mice. Female Ezh2cKO mice were initially subfertile, and then became infertile by 9 months. Mammary gland development in Ezh2cKO mice was inhibited. In summary, uterine EZH2 expression is developmentally and hormonally regulated, and its loss causes aberrant uterine epithelial proliferation, uterine hypertrophy, and cystic endometrial hyperplasia, indicating a critical role in uterine development and function.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Útero/enzimologia , Útero/crescimento & desenvolvimento , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Células Epiteliais/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Feminino , Histonas/metabolismo , Glândulas Mamárias Animais/enzimologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Gravidez , Progesterona/metabolismo
13.
Toxicol Pathol ; 47(8): 1049-1071, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31833458

RESUMO

During the past 20 years, investigations involving endocrine active substances (EAS) and reproductive toxicity have dominated the landscape of ecotoxicological research. This has occurred in concert with heightened awareness in the scientific community, general public, and governmental entities of the potential consequences of chemical perturbation in humans and wildlife. The exponential growth of experimentation in this field is fueled by our expanding knowledge into the complex nature of endocrine systems and the intricacy of their interactions with xenobiotic agents. Complicating factors include the ever-increasing number of novel receptors and alternate mechanistic pathways that have come to light, effects of chemical mixtures in the environment versus those of single EAS laboratory exposures, the challenge of differentiating endocrine disruption from direct cytotoxicity, and the potential for transgenerational effects. Although initially concerned with EAS effects chiefly in the thyroid glands and reproductive organs, it is now recognized that anthropomorphic substances may also adversely affect the nervous and immune systems via hormonal mechanisms and play substantial roles in metabolic diseases, such as type 2 diabetes and obesity.


Assuntos
Disruptores Endócrinos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Reprodução/efeitos dos fármacos , Animais , Congressos como Assunto , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/embriologia , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Especificidade da Espécie , Testículo/efeitos dos fármacos , Testículo/embriologia , Testículo/patologia , Útero/efeitos dos fármacos , Útero/embriologia , Útero/patologia
14.
Development ; 142(15): 2633-40, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26160904

RESUMO

During oocyte maturation, capacity and sensitivity of Ca(2+) signaling machinery increases dramatically, preparing the metaphase II (MII)-arrested egg for fertilization. Upon sperm-egg fusion, Ca(2+) release from IP3-sensitive endoplasmic reticulum stores results in cytoplasmic Ca(2+) oscillations that drive egg activation and initiate early embryo development. Premature Ca(2+) release can cause parthenogenetic activation prior to fertilization; thus, preventing inappropriate Ca(2+) signaling is crucial for ensuring robust MII arrest. Here, we show that regulator of G-protein signaling 2 (RGS2) suppresses Ca(2+) release in MII eggs. Rgs2 mRNA was recruited for translation during oocyte maturation, resulting in ∼ 20-fold more RGS2 protein in MII eggs than in fully grown immature oocytes. Rgs2-siRNA-injected oocytes matured to MII; however, they had increased sensitivity to low pH and acetylcholine (ACh), which caused inappropriate Ca(2+) release and premature egg activation. When matured in vitro, RGS2-depleted eggs underwent spontaneous Ca(2+) increases that were sufficient to cause premature zona pellucida conversion. Rgs2(-/-) females had reduced litter sizes, and their eggs had increased sensitivity to low pH and ACh. Rgs2(-/-) eggs also underwent premature zona pellucida conversion in vivo. These findings indicate that RGS2 functions as a brake to suppress premature Ca(2+) release in eggs that are poised on the brink of development.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Óvulo/fisiologia , Proteínas RGS/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Animais , Feminino , Imunofluorescência , Immunoblotting , Camundongos , Óvulo/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas
15.
Biol Reprod ; 98(4): 449-464, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29325037

RESUMO

Understanding factors that regulate zygotic genome activation (ZGA) is critical for determining how cells are reprogrammed to become totipotent or pluripotent. There is limited information regarding how this process occurs physiologically in early mammalian embryos. Here, we identify a mediator complex subunit, MED13, as translated during mouse oocyte maturation and transcribed early from the zygotic genome. Knockdown and conditional knockout approaches demonstrate that MED13 is essential for ZGA in the mouse, in part by regulating expression of the embryo-specific chromatin remodeling complex, esBAF. The role of MED13 in ZGA is mediated in part by interactions with E2F transcription factors. In addition to MED13, its paralog, MED13L, is required for successful preimplantation embryo development. MED13L partially compensates for loss of MED13 function in preimplantation knockout embryos, but postimplantation development is not rescued by MED13L. Our data demonstrate an essential role for MED13 in supporting chromatin reprogramming and directed transcription of essential genes during ZGA.


Assuntos
Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Complexo Mediador/metabolismo , Oócitos/metabolismo , Animais , Cromatina/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Genoma , Complexo Mediador/genética , Camundongos , Camundongos Knockout , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
16.
Toxicol Pathol ; 46(5): 574-596, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29895210

RESUMO

Developmental exposure to estrogenic chemicals is an established risk factor for cancer of the female reproductive tract. This increase in risk has been associated with disruption of normal patterns of cellular differentiation during critical stages of morphogenesis. The goal of this study was to document uterine epithelial phenotypes over time following neonatal treatment with the synthetic estrogen diethylstilbestrol (DES) or the soy phytoestrogen genistein (GEN) in female CD-1 mice. Both DES and GEN induced three distinct populations of abnormal endometrial epithelial cells: luminal (SIX1+/P63-/CK14-/CK18+), basal (SIX1+/P63+/CK14+/CK18-), and mixed/bipotential (SIX1+/P63-/CK14+/CK18+), which were all established by early adulthood. In older animals, DES and GEN resulted in uterine carcinomas with mixed glandular, basal, and squamous cell elements. All carcinomas were composed largely of the three abnormal cell types. These findings identify novel epithelial differentiation patterns in the uterus and support the idea that disruption of cellular programming in early development can influence cancer risk later in life.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neoplasias do Endométrio/induzido quimicamente , Endométrio/efeitos dos fármacos , Estrogênios/toxicidade , Morfogênese/efeitos dos fármacos , Lesões Pré-Cancerosas/induzido quimicamente , Animais , Animais Recém-Nascidos , Dietilestilbestrol/toxicidade , Neoplasias do Endométrio/patologia , Endométrio/crescimento & desenvolvimento , Endométrio/patologia , Feminino , Genisteína/toxicidade , Imuno-Histoquímica , Camundongos Endogâmicos , Lesões Pré-Cancerosas/patologia
17.
J Pathol ; 242(2): 246-259, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28295343

RESUMO

Epithelial membrane protein-2 (EMP2) is a tetraspan protein predicted to regulate placental development. Highly expressed in secretory endometrium and trophectoderm cells, previous studies suggest that it may regulate implantation by orchestrating the surface expression of integrins and other membrane proteins. In order to test the role of EMP2 in pregnancy, mice lacking EMP2 (Emp2-/- ) were generated. Emp2-/- females are fertile but have reduced litter sizes when carrying Emp2-/- but not Emp2+/- fetuses. Placentas of Emp2-/- fetuses exhibit dysregulation in pathways related to neoangiogenesis, coagulation, and oxidative stress, and have increased fibrin deposition and altered vasculature. Given that these findings often occur due to placental insufficiency resulting in an oxygen-poor environment, the expression of hypoxia-inducible factor-1 alpha (HIF-1α) was examined. Placentas from Emp2-/- fetuses had increased total HIF-1α expression in large part through an increase in uterine NK (uNK) cells, demonstrating a unique interplay between uNK cells and trophoblasts modulated through EMP2. To determine if these results translated to human pregnancy, placentas from normal, term deliveries or those complicated by placental insufficiency resulting in intrauterine growth restriction (IUGR) were stained for EMP2. EMP2 was significantly reduced in both villous and extravillous trophoblast populations in IUGR placentas. Experiments in vitro using human trophoblast cells lines indicate that EMP2 modulates angiogenesis by altering HIF-1α expression. Our results reveal a novel role for EMP2 in regulating trophoblast function and vascular development in mice and humans, and suggest that it may be a new biomarker for placental insufficiency. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Retardo do Crescimento Fetal/genética , Glicoproteínas de Membrana/genética , Oxigênio/metabolismo , Insuficiência Placentária/genética , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Fibrina/genética , Fibrina/metabolismo , Técnicas de Inativação de Genes , Recombinação Homóloga , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica , Placenta/irrigação sanguínea , Placenta/metabolismo , Placenta/patologia , Insuficiência Placentária/metabolismo , Insuficiência Placentária/patologia , Placentação , Gravidez , Trofoblastos/metabolismo , Trofoblastos/patologia , Útero/irrigação sanguínea , Útero/metabolismo , Útero/patologia
18.
J Genet Couns ; 27(1): 131-139, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28780754

RESUMO

In December 2014, the FDA approved olaparib, a poly(ADP-ribose) polymerase inhibitor (PARPi) for ovarian cancer patients who have failed three or more lines of chemotherapy and have a germline BRCA1/2 mutation identified through a companion diagnostic test (BRACAnalysis CDx™ (CDx™)) offered exclusively by Myriad Genetic Laboratories. This study explored the impact of PARPi/CDx™ on genetic counselors' (GCs) counseling and testing practices. One hundred twenty three GCs responded to an online survey regarding pre- and post-FDA approval referral patterns, testing strategies/influences, and anecdotal experiences with insurance coverage of PARPi for BRCA1/2 positive patients through a non-CDx™ platform. Following PARPi approval, 40% of respondents reported an increase in overall referrals of ovarian cancer patients and 20% had an increase in post-test counseling only referrals. The majority (61.9%) of respondents reported no change in genetic testing strategy, and there was no change in factors influencing choice of testing laboratory. Nearly all (98.1%) respondents who had experience with insurance covering PARPi indicated approval with mutations identified via non-CDx™ testing. Respondents indicated an increase in referral volume following FDA approval of PARPi/CDx™, but did not report changes in testing practices. Respondents were not aware of PARPi insurance coverage denial in the absence of CDx™.


Assuntos
Atitude do Pessoal de Saúde , Aconselhamento Genético/métodos , Testes Genéticos/métodos , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/normas , Proteína BRCA1 , Feminino , Humanos , Neoplasias Ovarianas/genética , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Relações Profissional-Paciente
19.
J Cell Sci ; 128(23): 4442-52, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483387

RESUMO

Initiation of mouse embryonic development depends upon a series of fertilization-induced rises in intracellular Ca(2+). Complete egg activation requires influx of extracellular Ca(2+); however, the channels that mediate this influx remain unknown. Here, we tested whether the α1 subunit of the T-type channel CaV3.2, encoded by Cacna1h, mediates Ca(2+) entry into oocytes. We show that mouse eggs express a robust voltage-activated Ca(2+) current that is completely absent in Cacna1h(-/-) eggs. Cacna1h(-/-) females have reduced litter sizes, and careful analysis of Ca(2+) oscillation patterns in Cacna1h(-/-) eggs following in vitro fertilization (IVF) revealed reductions in first transient length and oscillation persistence. Total and endoplasmic reticulum (ER) Ca(2+) stores were also reduced in Cacna1h(-/-) eggs. Pharmacological inhibition of CaV3.2 in wild-type CF-1 strain eggs using mibefradil or pimozide reduced Ca(2+) store accumulation during oocyte maturation and reduced Ca(2+) oscillation persistence, frequency and number following IVF. Overall, these data show that CaV3.2 T-type channels have prev8iously unrecognized roles in supporting the meiotic-maturation-associated increase in ER Ca(2+) stores and mediating Ca(2+) influx required for the activation of development.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Fertilização/fisiologia , Oócitos/metabolismo , Animais , Canais de Cálcio Tipo T/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Camundongos , Camundongos Knockout , Oócitos/citologia
20.
Proc Natl Acad Sci U S A ; 109(11): 4169-74, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371584

RESUMO

Mammalian fertilization is accompanied by oscillations in egg cytoplasmic calcium (Ca(2+)) concentrations that are critical for completion of egg activation. These oscillations are initiated by Ca(2+) release from inositol 1,4,5-trisphosphate (IP(3))-sensitive intracellular stores. We tested the hypothesis that Ca(2+) influx across the plasma membrane was a requisite component of egg activation signaling, and not simply a Ca(2+) source for store repletion. Using intracytoplasmic sperm injection (ICSI) and standard in vitro fertilization (IVF), we found that Ca(2+) influx was not required to initiate resumption of meiosis II. However, even if multiple oscillations in intracellular Ca(2+) occurred, in the absence of Ca(2+) influx, the fertilized eggs failed to emit the second polar body, resulting in formation of three pronuclei. Additional experiments using the Ca(2+) chelator, BAPTA/AM, demonstrated that Ca(2+) influx is sufficient to support polar body emission and pronucleus formation after only a single sperm-induced Ca(2+) transient, whereas BAPTA/AM-treated ICSI or fertilized eggs cultured in Ca(2+)-free medium remained arrested in metaphase II. Inhibition of store-operated Ca(2+) entry had no effect on ICSI-induced egg activation, so Ca(2+) influx through alternative channels must participate in egg activation signaling. Ca(2+) influx appears to be upstream of CaMKIIγ activity because eggs can be parthenogenetically activated with a constitutively active form of CaMKIIγ in the absence of extracellular Ca(2+). These results suggest that Ca(2+) influx at fertilization not only maintains Ca(2+) oscillations by replenishing Ca(2+) stores, but also activates critical signaling pathways upstream of CaMKIIγ that are required for second polar body emission.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Óvulo/citologia , Óvulo/metabolismo , Animais , Soluções Tampão , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ciclo Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cromatina/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Fertilização in vitro , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Modelos Biológicos , Óvulo/efeitos dos fármacos , Injeções de Esperma Intracitoplásmicas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa