Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 143(5): 822-30, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26811377

RESUMO

Vertebrate somitogenesis is regulated by a segmentation clock. Clock-linked genes exhibit cyclic expression, with a periodicity matching the rate of somite production. In mice, lunatic fringe (Lfng) expression oscillates, and LFNG protein contributes to periodic repression of Notch signaling. We hypothesized that rapid LFNG turnover could be regulated by protein processing and secretion. Here, we describe a novel Lfng allele (Lfng(RLFNG)), replacing the N-terminal sequences of LFNG, which allow for protein processing and secretion, with the N-terminus of radical fringe (a Golgi-resident protein). This allele is predicted to prevent protein secretion without altering the activity of LFNG, thus increasing the intracellular half-life of the protein. This allele causes dominant skeletal and somite abnormalities that are distinct from those seen in Lfng loss-of-function embryos. Expression of clock-linked genes is perturbed and mature Hes7 transcripts are stabilized in the presomitic mesoderm of mutant mice, suggesting that both transcriptional and post-transcriptional regulation of clock components are perturbed by RLFNG expression. Contrasting phenotypes in the segmentation clock and somite patterning of mutant mice suggest that LFNG protein may have context-dependent effects on Notch activity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Glicosiltransferases/fisiologia , Proteínas/genética , Somitos/fisiologia , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Padronização Corporal/genética , Feminino , Perfilação da Expressão Gênica , Genótipo , Glucosiltransferases , Glicosiltransferases/genética , Heterozigoto , Hibridização In Situ , Masculino , Mesoderma/metabolismo , Camundongos , Mutação , Fenótipo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores Notch/metabolismo , Transdução de Sinais
2.
Dev Biol ; 388(2): 159-69, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24560643

RESUMO

The segmental structure of the axial skeleton is formed during somitogenesis. During this process, paired somites bud from the presomitic mesoderm (PSM), in a process regulated by a genetic clock called the segmentation clock. The Notch pathway and the Notch modulator Lunatic fringe (Lfng) play multiple roles during segmentation. Lfng oscillates in the posterior PSM as part of the segmentation clock, but is stably expressed in the anterior PSM during presomite patterning. We previously found that mice lacking overt oscillatory Lfng expression in the posterior PSM (Lfng(∆FCE)) exhibit abnormal anterior development but relatively normal posterior development. This suggests distinct requirements for segmentation clock activity during the formation of the anterior skeleton (primary body formation), compared to the posterior skeleton and tail (secondary body formation). To build on these findings, we created an allelic series that progressively lowers Lfng levels in the PSM. Interestingly, we find that further reduction of Lfng expression levels in the PSM does not increase disruption of anterior development. However tail development is increasingly compromised as Lfng levels are reduced, suggesting that primary body formation is more sensitive to Lfng dosage than is secondary body formation. Further, we find that while low levels of oscillatory Lfng in the posterior PSM are sufficient to support relatively normal posterior development, the period of the segmentation clock is increased when the amplitude of Lfng oscillations is low. These data support the hypothesis that there are differential requirements for oscillatory Lfng during primary and secondary body formation and that posterior development is less sensitive to overall Lfng levels. Further, they suggest that modulation of the Notch signaling by Lfng affects the clock period during development.


Assuntos
Desenvolvimento Ósseo/genética , Dosagem de Genes , Glicosiltransferases/genética , Somitos/crescimento & desenvolvimento , Animais , Camundongos , Camundongos Transgênicos
3.
Cell Rep ; 17(2): 514-526, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705798

RESUMO

MyoD is a key regulator of skeletal myogenesis that directs contractile protein synthesis, but whether this transcription factor also regulates skeletal muscle metabolism has not been explored. In a genome-wide ChIP-seq analysis of skeletal muscle cells, we unexpectedly observed that MyoD directly binds to numerous metabolic genes, including those associated with mitochondrial biogenesis, fatty acid oxidation, and the electron transport chain. Results in cultured cells and adult skeletal muscle confirmed that MyoD regulates oxidative metabolism through multiple transcriptional targets, including PGC-1ß, a master regulator of mitochondrial biogenesis. We find that PGC-1ß expression is cooperatively regulated by MyoD and the alternative NF-κB signaling pathway. Bioinformatics evidence suggests that this cooperativity between MyoD and NF-κB extends to other metabolic genes as well. Together, these data identify MyoD as a regulator of the metabolic capacity of mature skeletal muscle to ensure that sufficient energy is available to support muscle contraction.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Animais , Camundongos , Mitocôndrias/genética , Contração Muscular/genética , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Mioblastos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ligação Proteica , Transdução de Sinais , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa