Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 170: 105768, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588987

RESUMO

Perturbations of the endolysosomal pathway have been suggested to play an important role in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Specifically, VPS35 and the retromer complex play an important role in the endolysosomal system and are implicated in the pathophysiology of these diseases. A single missense mutation in VPS35, Asp620Asn (D620N), is known to cause late-onset, autosomal dominant familial PD. In this review, we focus on the emerging role of the PD-linked D620N mutation in causing retromer dysfunction and dissect its implications in neurodegeneration. Additionally, we will discuss how VPS35 and the retromer are linked to AD, amyotrophic lateral sclerosis, and primary tauopathies. Interestingly, reduced levels of VPS35 and other retromer components have been observed in post-mortem brain tissue, suggesting a role for the retromer in the pathophysiology of these diseases. This review will provide a comprehensive dive into the mechanisms of VPS35 dysfunction in neurodegenerative diseases. Furthermore, we will highlight outstanding questions in the field and the retromer as a therapeutic target for neurodegenerative disease at large.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Endossomos/metabolismo , Humanos , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(12): 5765-5774, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842285

RESUMO

Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene represent a cause of late-onset, autosomal dominant familial Parkinson's disease (PD). A single missense mutation, D620N, is considered pathogenic based upon its segregation with disease in multiple families with PD. At present, the mechanism(s) by which familial VPS35 mutations precipitate neurodegeneration in PD are poorly understood. Here, we employ a germline D620N VPS35 knockin (KI) mouse model of PD to formally establish the age-related pathogenic effects of the D620N mutation at physiological expression levels. Our data demonstrate that a heterozygous or homozygous D620N mutation is sufficient to reproduce key neuropathological hallmarks of PD as indicated by the progressive degeneration of nigrostriatal pathway dopaminergic neurons and widespread axonal pathology. Unexpectedly, endogenous D620N VPS35 expression induces robust tau-positive somatodendritic pathology throughout the brain as indicated by abnormal hyperphosphorylated and conformation-specific tau, which may represent an important and early feature of mutant VPS35-induced neurodegeneration in PD. In contrast, we find no evidence for α-synuclein-positive neuropathology in aged VPS35 KI mice, a hallmark of Lewy body pathology in PD. D620N VPS35 expression also fails to modify the lethal neurodegenerative phenotype of human A53T-α-synuclein transgenic mice. Finally, by crossing VPS35 KI and null mice, our data demonstrate that a single D620N VPS35 allele is sufficient for survival and early maintenance of dopaminergic neurons, indicating that the D620N VPS35 protein is fully functional. Our data raise the tantalizing possibility of a pathogenic interplay between mutant VPS35 and tau for inducing neurodegeneration in PD.


Assuntos
Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Técnicas de Introdução de Genes , Masculino , Camundongos , Mutação , Doenças do Sistema Nervoso/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neuropatologia , Doença de Parkinson/genética , Transporte Proteico , alfa-Sinucleína/metabolismo , Proteínas tau/fisiologia
3.
Hum Mol Genet ; 27(18): 3189-3205, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29893854

RESUMO

Mutations in a number of genes cause familial forms of Parkinson's disease (PD), including mutations in the vacuolar protein sorting 35 ortholog (VPS35) and parkin genes. In this study, we identify a novel functional interaction between parkin and VPS35. We demonstrate that parkin interacts with and robustly ubiquitinates VPS35 in human neural cells. Familial parkin mutations are impaired in their ability to ubiquitinate VPS35. Parkin mediates the attachment of an atypical poly-ubiquitin chain to VPS35 with three lysine residues identified within the C-terminal region of VPS35 that are covalently modified by ubiquitin. Notably, parkin-mediated VPS35 ubiquitination does not promote the proteasomal degradation of VPS35. Furthermore, parkin does not influence the steady-state levels or turnover of VPS35 in neural cells and VPS35 levels are normal in the brains of parkin knockout mice. These data suggest that ubiquitination of VPS35 by parkin may instead serve a non-degradative cellular function potentially by regulating retromer-dependent sorting. Accordingly, we find that components of the retromer-associated WASH complex are markedly decreased in the brain of parkin knockout mice, suggesting that parkin may modulate WASH complex-dependent retromer sorting. Parkin gene silencing in primary cortical neurons selectively disrupts the vesicular sorting of the autophagy receptor ATG9A, a WASH-dependent retromer cargo. Parkin is not required for dopaminergic neurodegeneration induced by the expression of PD-linked D620N VPS35 in mice, consistent with VPS35 being located downstream of parkin function. Our data reveal a novel functional interaction of parkin with VPS35 that may be important for retromer-mediated endosomal sorting and PD.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Proteínas de Membrana/genética , Degeneração Neural/genética , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte Vesicular/genética , Animais , Autofagia/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Endossomos/genética , Humanos , Camundongos , Camundongos Knockout , Degeneração Neural/patologia , Doença de Parkinson/patologia , Poliubiquitina/genética , Transporte Proteico/genética
5.
J Parkinsons Dis ; 7(2): 219-233, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28222538

RESUMO

Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene encoding a core component of the retromer complex, have recently emerged as a new cause of late-onset, autosomal dominant familial Parkinson's disease (PD). A single missense mutation, AspD620Asn (D620N), has so far been unambiguously identified to cause PD in multiple individuals and families worldwide. The exact molecular mechanism(s) by which VPS35 mutations induce progressive neurodegeneration in PD are not yet known. Understanding these mechanisms, as well as the perturbed cellular pathways downstream of mutant VPS35, is important for the development of appropriate therapeutic strategies. In this review, we focus on the current knowledge surrounding VPS35 and its role in PD. We provide a critical discussion of the emerging data regarding the mechanisms underlying mutant VPS35-mediated neurodegeneration gleaned from genetic cell and animal models and highlight recent advances that may provide insight into the interplay between VPS35 and several other PD-linked gene products (i.e. α-synuclein, LRRK2 and parkin) in PD. Present data support a role for perturbed VPS35 and retromer function in the pathogenesis of PD.


Assuntos
Doença de Parkinson/genética , Proteínas de Transporte Vesicular/genética , Animais , Humanos , Dinâmica Mitocondrial , Mutação , Doença de Parkinson/metabolismo , Transporte Proteico , Receptores de AMPA/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa