RESUMO
Plate tectonics shapes Earth's surface, and is linked to motions within its deep interior1,2. Cold oceanic lithosphere sinks into the mantle, and hot mantle plumes rise from the deep Earth, leading to volcanism3,4. Volcanic eruptions over the past 320 million years have been linked to two large structures at the base of the mantle presently under Africa and the Pacific Ocean5,6. This has led to the hypothesis that these basal mantle structures have been stationary over geological time7,8, in contrast to observations and models suggesting that tectonic plates9,10, subduction zones11-14 and mantle plumes15,16 have been mobile, and that basal mantle structures are presently deforming17,18. Here we reconstruct mantle flow from one billion years ago to the present day to show that the history of volcanism is statistically as consistent with mobile basal mantle structures as with fixed ones. In our reconstructions, cold lithosphere sank deep into the African hemisphere between 740 and 500 million years ago, and from 400 million years ago the structure beneath Africa progressively assembled, pushed by peri-Gondwana slabs, to become a coherent structure as recently as 60 million years ago. Our mantle flow models suggest that basal mantle structures are mobile, and aggregate and disperse over time, similarly to continents at Earth's surface9. Our models also predict the presence of continental material in the mantle beneath Africa, consistent with geochemical data19,20.
RESUMO
The fossil record of marine invertebrates has long fuelled the debate as to whether or not there are limits to global diversity in the sea1-5. Ecological theory states that, as diversity grows and ecological niches are filled, the strengthening of biological interactions imposes limits on diversity6,7. However, the extent to which biological interactions have constrained the growth of diversity over evolutionary time remains an open question1-5,8-11. Here we present a regional diversification model that reproduces the main Phanerozoic eon trends in the global diversity of marine invertebrates after imposing mass extinctions. We find that the dynamics of global diversity are best described by a diversification model that operates widely within the exponential growth regime of a logistic function. A spatially resolved analysis of the ratio of diversity to carrying capacity reveals that less than 2% of the global flooded continental area throughout the Phanerozoic exhibits diversity levels approaching ecological saturation. We attribute the overall increase in global diversity during the Late Mesozoic and Cenozoic eras to the development of diversity hotspots under prolonged conditions of Earth system stability and maximum continental fragmentation. We call this the 'diversity hotspots hypothesis', which we propose as a non-mutually exclusive alternative to the hypothesis that the Mesozoic marine revolution led this macroevolutionary trend12,13.
Assuntos
Organismos Aquáticos , Biodiversidade , Extinção Biológica , Fósseis , Modelos Biológicos , Oceanos e Mares , Animais , Evolução Biológica , Ecologia , História Antiga , Invertebrados , Modelos LogísticosRESUMO
Semidwarfing genes have greatly increased wheat yields globally, yet the widely used gibberellin (GA)-insensitive genes Rht-B1b and Rht-D1b have disadvantages for seedling emergence. Use of the GA-sensitive semidwarfing gene Rht13 avoids this pleiotropic effect. Here, we show that Rht13 encodes a nucleotide-binding site/leucine-rich repeat (NB-LRR) gene. A point mutation in the semidwarf Rht-B13b allele autoactivates the NB-LRR gene and causes a height reduction comparable with Rht-B1b and Rht-D1b in diverse genetic backgrounds. The autoactive Rht-B13b allele leads to transcriptional up-regulation of pathogenesis-related genes including class III peroxidases associated with cell wall remodeling. Rht13 represents a new class of reduced height (Rht) gene, unlike other Rht genes, which encode components of the GA signaling or metabolic pathways. This discovery opens avenues to use autoactive NB-LRR genes as semidwarfing genes in a range of crop species, and to apply Rht13 in wheat breeding programs using a perfect genetic marker.
Assuntos
Nanismo , Triticum , Triticum/genética , Triticum/metabolismo , Nucleotídeos/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sítios de LigaçãoRESUMO
The use of spatial maps to navigate through the world requires a complex ongoing transformation of egocentric views of the environment into position within the allocentric map. Recent research has discovered neurons in retrosplenial cortex and other structures that could mediate the transformation from egocentric views to allocentric views. These egocentric boundary cells respond to the egocentric direction and distance of barriers relative to an animal's point of view. This egocentric coding based on the visual features of barriers would seem to require complex dynamics of cortical interactions. However, computational models presented here show that egocentric boundary cells can be generated with a remarkably simple synaptic learning rule that forms a sparse representation of visual input as an animal explores the environment. Simulation of this simple sparse synaptic modification generates a population of egocentric boundary cells with distributions of direction and distance coding that strikingly resemble those observed within the retrosplenial cortex. Furthermore, some egocentric boundary cells learnt by the model can still function in new environments without retraining. This provides a framework for understanding the properties of neuronal populations in the retrosplenial cortex that may be essential for interfacing egocentric sensory information with allocentric spatial maps of the world formed by neurons in downstream areas, including the grid cells in entorhinal cortex and place cells in the hippocampus.SIGNIFICANCE STATEMENT The computational model presented here demonstrates that the recently discovered egocentric boundary cells in retrosplenial cortex can be generated with a remarkably simple synaptic learning rule that forms a sparse representation of visual input as an animal explores the environment. Additionally, our model generates a population of egocentric boundary cells with distributions of direction and distance coding that strikingly resemble those observed within the retrosplenial cortex. This transformation between sensory input and egocentric representation in the navigational system could have implications for the way in which egocentric and allocentric representations interface in other brain areas.
Assuntos
Córtex Entorrinal , Aprendizagem , Animais , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Hipocampo , Encéfalo , Percepção Espacial/fisiologiaRESUMO
Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.
Assuntos
Alelos , Pleiotropia Genética , Mitocôndrias/enzimologia , RNA Mitocondrial/genética , RNA de Transferência/genética , Ribonuclease P/genética , Adulto , Feminino , Humanos , Masculino , LinhagemRESUMO
Effector proteins are central to the success of plant pathogens, while immunity in host plants is driven by receptor-mediated recognition of these effectors. Understanding the molecular details of effector-receptor interactions is key for the engineering of novel immune receptors. Here, we experimentally determined the crystal structure of the Puccinia graminis f. sp. tritici (Pgt) effector AvrSr27, which was not accurately predicted using AlphaFold2. We characterised the role of the conserved cysteine residues in AvrSr27 using in vitro biochemical assays and examined Sr27-mediated recognition using transient expression in Nicotiana spp. and wheat protoplasts. The AvrSr27 structure contains a novel ß-strand rich modular fold consisting of two structurally similar domains that bind to Zn2+ ions. The N-terminal domain of AvrSr27 is sufficient for interaction with Sr27 and triggering cell death. We identified two Pgt proteins structurally related to AvrSr27 but with low sequence identity that can also associate with Sr27, albeit more weakly. Though only the full-length proteins, trigger Sr27-dependent cell death in transient expression systems. Collectively, our findings have important implications for utilising protein prediction platforms for effector proteins, and those embarking on bespoke engineering of immunity receptors as solutions to plant disease.
Assuntos
Proteínas Fúngicas , Nicotiana , Triticum , Zinco , Zinco/metabolismo , Triticum/imunologia , Triticum/microbiologia , Nicotiana/imunologia , Nicotiana/microbiologia , Nicotiana/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Puccinia , Imunidade Vegetal , Ligação Proteica , Sequência de Aminoácidos , Morte Celular , Domínios Proteicos , Modelos Moleculares , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologiaRESUMO
BACKGROUND: Heart failure (HF) most commonly occurs in patients who have had a myocardial infarction (MI), but factors other than MI size may be deterministic. Fibrosis of myocardium remote from the MI is associated with adverse remodeling. We aimed to 1) investigate the association between remote myocardial fibrosis, measured using cardiovascular magnetic resonance (CMR) extracellular volume fraction (ECV), and HF and death following MI, 2) identify predictors of remote myocardial fibrosis in patients with evidence of MI and determine the relationship with infarct size. METHODS: Multicenter prospective cohort study of 1199 consecutive patients undergoing CMR with evidence of MI on late gadolinium enhancement. Median follow-up was 1133 (895-1442) days. Cox proportional hazards modeling was used to identify factors predictive of the primary outcome, a composite of first hospitalization for HF (HHF) or all-cause mortality, post-CMR. Linear regression modeling was used to identify determinants of remote ECV. RESULTS: Remote myocardial fibrosis was a strong predictor of primary outcome (χ2: 15.6, hazard ratio [HR]: 1.07 per 1% increase in ECV, 95% confidence interval [CI]: 1.04-1.11, p < 0.001) and was separately predictive of both HHF and death. The strongest predictors of remote ECV were diabetes, sex, natriuretic peptides, and body mass index, but, despite extensive phenotyping, the adjusted model R2 was only 0.283. The relationship between infarct size and remote fibrosis was very weak. CONCLUSION: Myocardial fibrosis, measured using CMR ECV, is a strong predictor of HHF and death in patients with evidence of MI. The mechanisms underlying remote myocardial fibrosis formation post-MI remain poorly understood, but factors other than infarct size appear to be important.
RESUMO
BACKGROUND: Heart failure (HF) with preserved or mildly reduced ejection fraction includes a heterogenous group of patients. Reclassification into distinct phenogroups to enable targeted interventions is a priority. This study aimed to identify distinct phenogroups, and compare phenogroup characteristics and outcomes, from electronic health record data. METHODS: 2,187 patients admitted to five UK hospitals with a diagnosis of HF and a left ventricular ejection fraction ≥ 40% were identified from the NIHR Health Informatics Collaborative database. Partition-based, model-based, and density-based machine learning clustering techniques were applied. Cox Proportional Hazards and Fine-Gray competing risks models were used to compare outcomes (all-cause mortality and hospitalisation for HF) across phenogroups. RESULTS: Three phenogroups were identified: (1) Younger, predominantly female patients with high prevalence of cardiometabolic and coronary disease; (2) More frail patients, with higher rates of lung disease and atrial fibrillation; (3) Patients characterised by systemic inflammation and high rates of diabetes and renal dysfunction. Survival profiles were distinct, with an increasing risk of all-cause mortality from phenogroups 1 to 3 (p < 0.001). Phenogroup membership significantly improved survival prediction compared to conventional factors. Phenogroups were not predictive of hospitalisation for HF. CONCLUSIONS: Applying unsupervised machine learning to routinely collected electronic health record data identified phenogroups with distinct clinical characteristics and unique survival profiles.
Assuntos
Registros Eletrônicos de Saúde , Insuficiência Cardíaca , Volume Sistólico , Função Ventricular Esquerda , Humanos , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/mortalidade , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Medição de Risco , Reino Unido/epidemiologia , Fatores de Risco , Prognóstico , Idoso de 80 Anos ou mais , Bases de Dados Factuais , Aprendizado de Máquina não Supervisionado , Hospitalização , Fatores de Tempo , Comorbidade , Causas de Morte , Fenótipo , Mineração de DadosRESUMO
PURPOSE: Accessible patient information sources are vital in educating patients about the benefits and risks of spinal surgery, which is crucial for obtaining informed consent. We aim to assess the effectiveness of a natural language processing (NLP) pipeline in recognizing surgical procedures from clinic letters and linking this with educational resources. METHODS: Retrospective examination of letters from patients seeking surgery for degenerative spinal disease at a single neurosurgical center. We utilized MedCAT, a named entity recognition and linking NLP, integrated into the electronic health record (EHR), which extracts concepts and links them to systematized nomenclature of medicine-clinical terms (SNOMED-CT). Investigators reviewed clinic letters, identifying words or phrases that described or identified operations and recording the SNOMED-CT terms as ground truth. This was compared to SNOMED-CT terms identified by the model, untrained on our dataset. A pipeline linking clinic letters to patient-specific educational resources was established, and precision, recall, and F1 scores were calculated. RESULTS: Across 199 letters the model identified 582 surgical procedures, and the overall pipeline after adding rules a total of 784 procedures (precision = 0.94, recall = 0.86, F1 = 0.91). Across 187 letters with identified SNOMED-CT terms the integrated pipeline linking education resources directly to the EHR was successful in 157 (78%) patients (precision = 0.99, recall = 0.87, F1 = 0.92). CONCLUSIONS: NLP accurately identifies surgical procedures in pre-operative clinic letters within an untrained subspecialty. Performance varies among letter authors and depends on the language used by clinicians. The identified procedures can be linked to patient education resources, potentially improving patients' understanding of surgical procedures.
Assuntos
Processamento de Linguagem Natural , Educação de Pacientes como Assunto , Humanos , Educação de Pacientes como Assunto/métodos , Estudos Retrospectivos , Registros Eletrônicos de Saúde , Systematized Nomenclature of MedicineRESUMO
INTRODUCTION: Informed consent is an ethical and legal component of healthcare. It ensures patient autonomy and allows patients to make decisions regarding their treatment. In dental care, informed consent is particularly important because most dental procedures are invasive. Since dental students are future dentists, they need to learn about their ethical obligations and accountability through the informed consent process as this is critical to patients' well-being. This study aimed to determine dental students' knowledge, attitudes, and practices of the informed consent process for oral health care in Makerere University Dental Hospital, Uganda. STUDY METHODOLOGY: This was a descriptive cross-sectional study using quantitative methods. It was carried out at Makerere University Dental Hospital and third, fourth, and fifth-year students (n = 102) pursuing a Bachelor of Dental Surgery program took part in the survey. A self-administered structured questionnaire was used to assess their knowledge, attitudes, and practices of informed consent for oral health care. Collected data were entered into Epi-data version 3.1, where it was cleaned, coded, and imported to STATA version 14 software for statistical analysis. RESULTS: About two-thirds 67 (65.7%) of the participants were males. The mean age was 25 (SD = 3.21) years. The majority (90%) of the students had a high level of knowledge of the informed consent process. About (80%) had a positive attitude towards informed consent and (85%) most often practiced the informed consent process. Based on bi-variate analysis, training on informed consent, year of study, age, and sex were significantly associated with the informed consent process. However, there was no significant risk factor associated with informed consent in multiple logistic regression analysis. CONCLUSION: The study findings highlighted high levels of knowledge, positive attitude, and practice of the informed consent process among the clinical dental students. Continuous training is necessary to remind dental students about the importance of informed consent in healthcare, not only for complex procedures.
Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Consentimento Livre e Esclarecido , Estudantes de Odontologia , Humanos , Uganda , Estudantes de Odontologia/psicologia , Masculino , Estudos Transversais , Feminino , Adulto , Adulto Jovem , Inquéritos e Questionários , Atitude do Pessoal de Saúde , Educação em Odontologia , Assistência OdontológicaRESUMO
PURPOSE: This study aimed to compare the performance of ChatGPT, a large language model (LLM), with human neurosurgical applicants in a neurosurgical national selection interview, to assess the potential of artificial intelligence (AI) and LLMs in healthcare and provide insights into their integration into the field. METHODS: In a prospective comparative study, a set of neurosurgical national selection-style interview questions were asked to eight human participants and ChatGPT in an online interview. All participants were doctors currently practicing in the UK who had applied for a neurosurgical National Training Number. Interviews were recorded, anonymised, and scored by three neurosurgical consultants with experience as interviewers for national selection. Answers provided by ChatGPT were used as a template for a virtual interview. Interview transcripts were subsequently scored by neurosurgical consultants using criteria utilised in real national selection interviews. Overall interview score and subdomain scores were compared between human participants and ChatGPT. RESULTS: For overall score, ChatGPT fell behind six human competitors and did not achieve a mean score higher than any individuals who achieved training positions. Several factors, including factual inaccuracies and deviations from expected structure and style may have contributed to ChatGPT's underperformance. CONCLUSIONS: LLMs such as ChatGPT have huge potential for integration in healthcare. However, this study emphasises the need for further development to address limitations and challenges. While LLMs have not surpassed human performance yet, collaboration between humans and AI systems holds promise for the future of healthcare.
RESUMO
Purpose: Limited evidence exists to assess the sensitivity, specificity, and accuracy of point-of-care lung ultrasound (LUS) across all age groups. This review aimed to investigate the benefits of point-of-care LUS for the early diagnosis of pneumonia compared to traditional chest X-rays (CXR) in a subgroup analysis including pediatric, adult, and geriatric populations. Material and Methods: This systematic review examined systematic reviews, meta-analyses, and original research from 2017 to 2021, comparing point-of-care LUS and CXR in diagnosing pneumonia among adults, pediatrics and geriatrics. Studies lacking direct comparison or exploring diseases other than pneumonia, case reports, and those examining pneumonia secondary to COVID-19 variants were excluded. The search utilized PubMed, Google Scholar, and Cochrane databases with specific search strings. The study selection, conducted by two independent investigators, demonstrated an agreement by the Kappa index, ensuring reliable article selection. The QUADAS-2 tool assessed the selected studies for quality, highlighting risk of bias and applicability concerns across key domains. Statistical analysis using Stata Version 16 determined pooled sensitivity and specificity via a bivariate model, emphasizing LUS and CXR diagnostic capabilities. Additionally, RevMan 5.4.1 facilitated the calculation of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), offering insights into diagnostic accuracy. Results: The search, conducted across PubMed, Google Scholar, and Cochrane Library databases by two independent investigators, initially identified 1045 articles. Following screening processes, 12 studies comprised a sample size of 2897. LUS demonstrated a likelihood ratio of 5.09, a specificity of 81.91%, and a sensitivity of 92.13% in detecting pneumonia in pediatric, adult, and geriatric patients, with a p-value of 0.0002 and a 95% confidence interval, indicating diagnostic accuracy ranging from 84.07% to 96.29% when compared directly to CXR. Conclusion: Our review supports that LUS can play a valuable role in detecting pneumonia early with high sensitivity, specificity, and diagnostic accuracy across diverse patient demographics, including pediatric, adult, and geriatric populations. Since it overcomes most of the limitations of CXR and other diagnostic modalities, it can be utilized as a diagnostic tool for pneumonia for all age groups as it is a safe, readily available, and cost-effective modality that can be utilized in an emergency department, intensive care units, wards, and clinics by trained respiratory care professionals.
RESUMO
The plant pathogen Parastagonospora nodorum secretes necrotrophic effectors to promote disease. These effectors induce cell death on wheat cultivars carrying dominant susceptibility genes in an inverse gene-for-gene manner. However, the molecular mechanisms underpinning these interactions and resulting cell death remain unclear. Here, we used a yeast two-hybrid library approach to identify wheat proteins that interact with the necrotrophic effector ToxA. Using this strategy, we identified an interaction between ToxA and a wheat transmembrane NDR/HIN1-like protein (TaNHL10) and confirmed the interaction using in planta co-immunoprecipitation and confocal microscopy co-localization analysis. We showed that the C-terminus of TaNHL10 is extracellular whilst the N-terminus is localized in the cytoplasm. Further analyses using yeast two-hybrid and confocal microscopy co-localization showed that ToxA interacts with the C-terminal LEA2 extracellular domain of TaNHL10. Random mutagenesis was then used to identify a ToxA mutant, ToxAN109D , which was unable to interact with TaNHL10 in yeast two-hybrid assays. Subsequent heterologous expression and purification of ToxAN109D in Nicotiania benthamiana revealed that the mutated protein was unable to induce necrosis on Tsn1-dominant wheat cultivars, confirming that the interaction of ToxA with TaNHL10 is required to induce cell death. Collectively, these data advance our understanding on how ToxA induces cell death during infection and further highlight the importance of host cell surface interactions in necrotrophic pathosystems.
Assuntos
Micotoxinas , Triticum , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/genética , Micotoxinas/genética , Necrose , Doenças das Plantas/genética , Saccharomyces cerevisiae/metabolismo , Triticum/genética , Triticum/metabolismoRESUMO
Parastagonospora nodorum is a necrotrophic pathogen of wheat that is particularly destructive in major wheat-growing regions of the United States, northern Europe, Australia, and South America. P. nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD), resulting in increased colonization of host tissue and, ultimately, sporulation to complete its pathogenic life cycle. Intensive research over the last two decades has led to the functional characterization of five proteinaceous necrotrophic effectors, SnTox1, SnToxA, SnTox267, SnTox3, and SnTox5, and three wheat susceptibility genes, Tsn1, Snn1, and Snn3D-1. Functional characterization has revealed that these effectors, in addition to inducing PCD, have additional roles in pathogenesis, including chitin binding that results in protection from wheat chitinases, blocking defense response signaling, and facilitating plant colonization. There are still large gaps in our understanding of how this necrotrophic pathogen is successfully manipulating wheat defense to complete its life cycle. This review summarizes our current knowledge, identifies knowledge gaps, and provides a summary of well-developed tools and resources currently available to study the P. nodorum-wheat interaction, which has become a model for necrotrophic specialist interactions. Further functional characterization of the effectors involved in this interaction and work toward a complete understanding of how P. nodorum manipulates wheat defense will provide fundamental knowledge about this and other necrotrophic interactions. Additionally, a broader understanding of this interaction will contribute to the successful management of Septoria nodorum blotch disease on wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Ascomicetos , Triticum , Triticum/genética , Ascomicetos/fisiologia , Proteínas Fúngicas/metabolismo , Proteínas de Plantas/metabolismo , Doenças das Plantas/genética , Interações Hospedeiro-Patógeno/genéticaRESUMO
Signalling lipids of the N-acyl ethanolamine (NAE) and ceramide (CER) classes have emerged as potential biomarkers of cardiovascular disease (CVD). We sought to establish the heritability of plasma NAEs (including the endocannabinoid anandamide) and CERs, to identify common DNA variants influencing the circulating concentrations of the heritable lipids, and assess causality of these lipids in CVD using 2-sample Mendelian randomization (2SMR). Nine NAEs and 16 CERs were analyzed in plasma samples from 999 members of 196 British Caucasian families, using targeted ultra-performance liquid chromatography with tandem mass spectrometry. All lipids were significantly heritable (h2 = 36-62%). A missense variant (rs324420) in the gene encoding the enzyme fatty acid amide hydrolase (FAAH), which degrades NAEs, associated at genome-wide association study (GWAS) significance (P < 5 × 10-8) with four NAEs (DHEA, PEA, LEA and VEA). For CERs, rs680379 in the SPTLC3 gene, which encodes a subunit of the rate-limiting enzyme in CER biosynthesis, associated with a range of species (e.g. CER[N(24)S(19)]; P = 4.82 × 10-27). We observed three novel associations between SNPs at the CD83, SGPP1 and DEGS1 loci, and plasma CER traits (P < 5 × 10-8). 2SMR in the CARDIoGRAMplusC4D cohorts (60 801 cases; 123 504 controls) and in the DIAGRAM cohort (26 488 cases; 83 964 controls), using the genetic instruments from our family-based GWAS, did not reveal association between genetically determined differences in CER levels and CVD or diabetes. Two of the novel GWAS loci, SGPP1 and DEGS1, suggested a casual association between CERs and a range of haematological phenotypes, through 2SMR in the UK Biobank, INTERVAL and UKBiLEVE cohorts (n = 110 000-350 000).
Assuntos
Biomarcadores/sangue , Doenças Cardiovasculares/sangue , Ceramidas/sangue , Etanolaminas/sangue , Predisposição Genética para Doença , Lipidômica/métodos , Polimorfismo de Nucleotídeo Único , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Estudos de Casos e Controles , Ceramidas/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-IdadeRESUMO
OBJECTIVE: A scoping review of the literature was conducted to identify intraoperative artificial intelligence (AI) applications for robotic surgery under development and categorize them by (1) purpose of the applications, (2) level of autonomy, (3) stage of development, and (4) type of measured outcome. BACKGROUND: In robotic surgery, AI-based applications have the potential to disrupt a field so far based on a master-slave paradigm. However, there is no available overview about this technology's current stage of development and level of autonomy. METHODS: MEDLINE and EMBASE were searched between January 1, 2010 and May 21, 2022. Abstract screening, full-text review, and data extraction were performed independently by 2 reviewers. The level of autonomy was defined according to the Yang and colleagues' classification and stage of development according to the Idea, Development, Evaluation, Assessment, and Long-term follow-up framework. RESULTS: One hundred twenty-nine studies were included in the review. Ninety-seven studies (75%) described applications providing Robot Assistance (autonomy level 1), 30 studies (23%) application enabling Task Autonomy (autonomy level 2), and 2 studies (2%) application achieving Conditional autonomy (autonomy level 3). All studies were at Idea, Development, Evaluation, Assessment, and Long-term follow-up stage 0 and no clinical investigations on humans were found. One hundred sixteen (90%) conducted in silico or ex vivo experiments on inorganic material, 9 (7%) ex vivo experiments on organic material, and 4 (3%) performed in vivo experiments in porcine models. CONCLUSIONS: Clinical evaluation of intraoperative AI applications for robotic surgery is still in its infancy and most applications have a low level of autonomy. With increasing levels of autonomy, the evaluation focus seems to shift from AI-specific metrics to process outcomes, although common standards are needed to allow comparison between systems.
Assuntos
Procedimentos Cirúrgicos Robóticos , Humanos , Animais , Suínos , Inteligência Artificial , BenchmarkingRESUMO
IMPORTANCE: Synthetic nitrification inhibitors are routinely used with nitrogen fertilizers to reduce nitrogen losses from agroecosystems, despite having drawbacks like poor efficiency, cost, and entry into the food chain. Plant-derived BNIs constitute a more environmentally conducive alternative. Knowledge on the activity of BNIs to soil nitrifiers is largely based on bioassays with a single Nitrosomonas europaea strain which does not constitute a dominant member of the community of ammonia-oxidizing microorganisms (AOM) in soil. We determined the activity of several plant-derived molecules reported as having activity, including the recently discovered maize-isolated BNI, zeanone, and its natural analog, 2-methoxy-1,4-naphthoquinone, on a range of ecologically relevant AOM and one nitrite-oxidizing bacterial culture, expanding our knowledge on the intrinsic inhibition potential of BNIs toward AOM and highlighting the necessity for a deeper understanding of the effect of BNIs on the overall soil microbiome integrity before their further use in agricultural settings.
Assuntos
Bactérias , Solo , Amônia , Nitritos/farmacologia , Nitrificação , Nitrogênio/farmacologia , Microbiologia do Solo , Oxirredução , ArchaeaRESUMO
To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.
Assuntos
Basidiomycota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Basidiomycota/genética , Fungos/genética , Pirofosfatases/metabolismo , Virulência/genética , Doenças das Plantas/microbiologia , Nudix HidrolasesRESUMO
OBJECTIVES: Medication adherence in patients with heart failure with preserved ejection fraction is unclear. This study sought to evaluate treatment adherence in the Pirfenidone in Patients with Heart Failure and Preserved Left Ventricular Ejection Fraction (PIROUETTE) trial. METHODS AND RESULTS: Adherence was evaluated through pill counts and diary cards. Univariable and multivariable regression models were used to assess the relationship between adherence and baseline characteristics. Instrumental variable regression was used to estimate the causal effect of pirfenidone treatment duration on myocardial fibrosis. Complete adherence data were available in 54 of 80 participants completing the trial. Mean adherence to study medication was 94.7% and 96.9% in the pirfenidone and placebo groups, respectively. Each additional day of treatment with pirfenidone resulted in a significant decrease in myocardial extracellular volume (-0.004%; 95% confidence interval: -0.007% to -0.001%; Pâ¯=â¯0.007). Associations with adherence included older age, higher symptom burden, lower body weight, and smaller right ventricular size. CONCLUSION: Adherence to study medication in the PIROUETTE trial was very high among patients for whom complete adherence data were available. Importantly, each additional day of treatment reduced myocardial fibrosis. Potential predictors of adherence were identified. Implementation of improved methods for assessing adherence is required.
Assuntos
Insuficiência Cardíaca , Humanos , Volume Sistólico , Insuficiência Cardíaca/tratamento farmacológico , Função Ventricular Esquerda , Fibrose , Cooperação e Adesão ao TratamentoRESUMO
PURPOSE: Cancer immunotherapies (CITs) have revolutionized the treatment of certain cancers, but many patients fail to respond or relapse from current therapies, prompting the need for new CIT agents. CD8+ T cells play a central role in the activity of many CITs, and thus, the rapid imaging of CD8+ cells could provide a critical biomarker for new CIT agents. However, existing 89Zr-labeled CD8 PET imaging reagents exhibit a long circulatory half-life and high radiation burden that limit potential applications such as same-day and longitudinal imaging. METHODS: To this end, we discovered and developed a 13-kDa single-domain antibody (VHH5v2) against human CD8 to enable high-quality, same-day imaging with a reduced radiation burden. To enable sensitive and rapid imaging, we employed a site-specific conjugation strategy to introduce an 18F radiolabel to the VHH. RESULTS: The anti-CD8 VHH, VHH5v2, demonstrated binding to a membrane distal epitope of human CD8 with a binding affinity (KD) of 500 pM. Subsequent imaging experiments in several xenografts that express varying levels of CD8 demonstrated rapid tumor uptake and fast clearance from the blood. High-quality images were obtained within 1 h post-injection and could quantitatively differentiate the tumor models based on CD8 expression level. CONCLUSION: Our work reveals the potential of this anti-human CD8 VHH [18F]F-VHH5v2 to enable rapid and specific imaging of CD8+ cells in the clinic.