RESUMO
The ice-free McMurdo Dry Valleys of Antarctica are dominated by nutrient-poor mineral soil and rocky outcrops. The principal habitat for microorganisms is within rocks (endolithic). In this environment, microorganisms are provided with protection against sub-zero temperatures, rapid thermal fluctuations, extreme dryness, and ultraviolet and solar radiation. Endolithic communities include lichen, algae, fungi, and a diverse array of bacteria. Chloroflexota is among the most abundant bacterial phyla present in these communities. Among the Chloroflexota are four novel classes of bacteria, here named Candidatus Spiritibacteria class. nov. (=UBA5177), Candidatus Martimicrobia class. nov. (=UBA4733), Candidatus Tarhunnaeia class. nov. (=UBA6077), and Candidatus Uliximicrobia class. nov. (=UBA2235). We retrieved 17 high-quality metagenome-assembled genomes (MAGs) that represent these four classes. Based on genome predictions, all these bacteria are inferred to be aerobic heterotrophs that encode enzymes for the catabolism of diverse sugars. These and other organic substrates are likely derived from lichen, algae, and fungi, as metabolites (including photosynthate), cell wall components, and extracellular matrix components. The majority of MAGs encode the capacity for trace gas oxidation using high-affinity uptake hydrogenases, which could provide energy and metabolic water required for survival and persistence. Furthermore, some MAGs encode the capacity to couple the energy generated from H2 and CO oxidation to support carbon fixation (atmospheric chemosynthesis). All encode mechanisms for the detoxification and efflux of heavy metals. Certain MAGs encode features that indicate possible interactions with other organisms, such as Tc-type toxin complexes, hemolysins, and macroglobulins.IMPORTANCEThe ice-free McMurdo Dry Valleys of Antarctica are the coldest and most hyperarid desert on Earth. It is, therefore, the closest analog to the surface of the planet Mars. Bacteria and other microorganisms survive by inhabiting airspaces within rocks (endolithic). We identify four novel classes of phylum Chloroflexota, and, based on interrogation of 17 metagenome-assembled genomes, we predict specific metabolic and physiological adaptations that facilitate the survival of these bacteria in this harsh environment-including oxidation of trace gases and the utilization of nutrients (including sugars) derived from lichen, algae, and fungi. We propose that such adaptations allow these endolithic bacteria to eke out an existence in this cold and extremely dry habitat.
Assuntos
Bactérias , Chloroflexi , Regiões Antárticas , Bactérias/genética , Fungos/genética , Temperatura Baixa , AçúcaresRESUMO
PURPOSE: This study uses a phantom to investigate the dosimetric impact of rotational setup errors for Single Isocenter Multiple Targets (SIMT) HyperArc plans. Additionally, it evaluates intra-fractional rotational setup errors in patients treated with Encompass immobilization system. METHODS: The Varian HyperArc system (Varian Medical systems) was used to create plans targeting spherical PTVs with diameters of 5, 10, and 15 mm and with offsets of 1.3-5.3 cm from the isocenter. Dosimetric parameters, including mean and maximum dose, D99% and D95% were evaluated for various rotational setup errors ranging from 0.5° to 2° for the PTVs and certain CTVs created within PTVs. These rotational errors were applied in an order and direction that resulted in the maximum displacement of targets. The rotation was applied both uniformly around all three axes and individually around each axis. Furthermore, to link the findings to actual treatment scenarios, the intra-fractional rotational setup errors were obtained for stereotactic cranial patients treated with the Encompass system using CBCT images acquired during treatments. RESULTS: The maximum displacement of 2.7 mm was observed for targets located at 4.4 and 4.5 cm from the isocenter with rotational setup errors of 2°. The dose reduction for D99% values corresponding to this displacement were about 50%, 40%, and 30% for PTVs with diameters of 5, 10, and 15 mm, respectively. Both D99% and D95% showed a consistent trend of dose reduction across various rotational errors and PTV volumes. While the maximum dose remained consistent for different targets with various rotational errors, the mean dose decreased by approximately 25%, 12%, and 6% for PTVs with diameters of 5, 10, and 15 cm, respectively, with rotational errors of 2°. In addition, by analyzing CBCT images, the absolute mean rotational setup errors obtained during treatment with Encompass for pitch, roll, and yaw were 0.17° ± 0.13°, 0.11° ± 0.10°, and 0.12° ± 0.10° respectively. This data, combined with existing studies, suggest that a 0.5° rotational setup error is a safe choice to consider for calculating additional PTV margin to ensure adequate CTV coverage. Therefore, the assessment of maximum displacement and dosimetric parameters in this study, for a 0.5° rotational error, highlights the need for an additional 0.7 mm PTV margin for targets positioned at distances of 4.4 cm or greater from the isocenter. CONCLUSIONS: For SIMT Plans, a 0.5° rotational setup error is recommended as a basis for calculating additional PTV margins to ensure adequate CTV coverage when using the Encompass system.
Assuntos
Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Radiometria/métodos , Rotação , Radiocirurgia/métodosRESUMO
Uncultivated microbial clades ('microbial dark matter') are inferred to play important but uncharacterized roles in nutrient cycling. Using Antarctic lake (Ace Lake, Vestfold Hills) metagenomes, 12 metagenome-assembled genomes (MAGs; 88%-100% complete) were generated for four 'dark matter' phyla: six MAGs from Candidatus Auribacterota (=Aureabacteria, SURF-CP-2), inferred to be hydrogen- and sulfide-producing fermentative heterotrophs, with individual MAGs encoding bacterial microcompartments (BMCs), gas vesicles, and type IV pili; one MAG (100% complete) from Candidatus Hinthialibacterota (=OLB16), inferred to be a facultative anaerobe capable of dissimilatory nitrate reduction to ammonia, specialized for mineralization of complex organic matter (e.g. sulfated polysaccharides), and encoding BMCs, flagella, and Tad pili; three MAGs from Candidatus Electryoneota (=AABM5-125-24), previously reported to include facultative anaerobes capable of dissimilatory sulfate reduction, and here inferred to perform sulfite oxidation, reverse tricarboxylic acid cycle for autotrophy, and possess numerous proteolytic enzymes; two MAGs from Candidatus Lernaellota (=FEN-1099), inferred to be capable of formate oxidation, amino acid fermentation, and possess numerous enzymes for protein and polysaccharide degradation. The presence of 16S rRNA gene sequences in public metagenome datasets (88%-100% identity) suggests these 'dark matter' phyla contribute to sulfur cycling, degradation of complex organic matter, ammonification and/or chemolithoautotrophic CO2 fixation in diverse global environments.
Assuntos
Lagos , Metagenoma , Regiões Antárticas , Bactérias , Escuridão , Lagos/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismoRESUMO
In hypersaline environments, Nanohaloarchaeota (Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota, Nanohaloarchaeota [DPANN] superphylum) are thought to be free-living microorganisms. We report cultivation of 2 strains of Antarctic Nanohaloarchaeota and show that they require the haloarchaeon Halorubrum lacusprofundi for growth. By performing growth using enrichments and fluorescence-activated cell sorting, we demonstrated successful cultivation of Candidatus Nanohaloarchaeum antarcticus, purification of Ca. Nha. antarcticus away from other species, and growth and verification of Ca. Nha. antarcticus with Hrr. lacusprofundi; these findings are analogous to those required for fulfilling Koch's postulates. We use fluorescent in situ hybridization and transmission electron microscopy to assess cell structures and interactions; metagenomics to characterize enrichment taxa, generate metagenome assembled genomes, and interrogate Antarctic communities; and proteomics to assess metabolic pathways and speculate about the roles of certain proteins. Metagenome analysis indicates the presence of a single species, which is endemic to Antarctic hypersaline systems that support the growth of haloarchaea. The presence of unusually large proteins predicted to function in attachment and invasion of hosts plus the absence of key biosynthetic pathways (e.g., lipids) in metagenome assembled genomes of globally distributed Nanohaloarchaeota indicate that all members of the lineage have evolved as symbionts. Our work expands the range of archaeal symbiotic lifestyles and provides a genetically tractable model system for advancing understanding of the factors controlling microbial symbiotic relationships.
Assuntos
Halorubrum/fisiologia , Metagenoma , Nanoarchaeota/fisiologia , Simbiose/fisiologia , Regiões Antárticas , DNA Arqueal/genética , DNA Arqueal/isolamento & purificação , Citometria de Fluxo , Genoma Arqueal/genética , Halorubrum/ultraestrutura , Metagenômica , Microscopia Eletrônica de Transmissão , Nanoarchaeota/ultraestrutura , Filogenia , SalinidadeRESUMO
Small field output factors for Multileaf collimator (MLC)-defined field sizes between 0.5 × 0.5 cm2 and 3 × 3 cm2 were measured with six different detectors for a Varian TrueBeam in 6-MV, 6-FFF, 10-MV, and 10-FFF photon beams. Correction factors k Q clin , Q ref f clin , f ref $k_{{Q_{{\rm{clin}}}},{Q_{{\rm{ref}}}}}^{{f_{{\rm{clin}}}},{f_{{\rm{ref}}}}}$ from the IAEA publication TRS-483 were used to correct the measured output factors. The corrected output factors from the six detectors were used to calculate correction factors for the PTW microSilicon T60023 (PTW, Freiburg, Germany) and IBA Razor (IBA Dosimetry, Schwarzenbruck, Germany) detectors. The uncertainty of the output and correction factors in this study was calculated and the calculations presented in detail. The application of the TRS-483 correction factors significantly reduced the variation in output factors between the various detectors, with the exception of the PTW 60016 diode in 6-MV and 6-FFF beams, and the IBA PFD in 10-MV and 10-FFF beams. Correction factors calculated for the Razor agreed within 2.9% of existing literature for all energies, while the microSilicon correction factors agreed within 1.6% to the literature for 6-MV beams. The uncertainty in the microSilicon and Razor correction factors was calculated to be less than 0.9% (k = 1). This study shows that TRS-483 correction factors reduce the variation in output factors between the detectors used in this study and presents a suitable method for determining correction factors for detectors with unpublished values.
Assuntos
Fótons , Radiometria , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Radiometria/métodos , IncertezaRESUMO
BACKGROUND: Ultracongruent (UC) tibial bearings are being used with increasing frequency in the United States. Evidence suggests that the use of certain UC bearings may lead to improved patient satisfaction when compared with using conventional inserts. However, little is known as to what effect the use of UC tibial inserts has on bone ingrowth in uncemented total knee arthroplasty (TKA). The purpose of this study was to determine the early clinical and radiographic results of TKA using a press-fit dual-pivot design. METHODS: Between 2017 and 2019, a consecutive series of 232 TKAs were implanted using a press-fit tibial and femoral component and a UC dual-pivot tibial insert. Sixty-two percent of patients were male. The average age was 56 years. Patients were followed for a minimum of 2 years (range, 24-42 months) using KOOS-JR and Knee Society clinical and radiographic evaluation. RESULTS: No patient had more than mild knee stiffness at the final follow-up. Two patients reported moderate knee pain with stair climbing. All other patients reported either mild or no pain with activity. Knee Society pain scores averaged 42 points. Flexion averaged 118 degrees. Three knees (1.3%) were revised (one each for flexion instability, tibial plateau fracture, and suspected femoral component loosening). No other cases of femoral or tibial loosening were identified. CONCLUSION: Although the success of uncemented TKA is determined by a variety of factors, the use of this dual-pivot knee design did not appear to influence tibial or femoral component fixation at early follow-up, yielding acceptable clinical and radiographic outcomes.
Assuntos
Artroplastia do Joelho , Prótese do Joelho , Artroplastia do Joelho/métodos , Fenômenos Biomecânicos , Feminino , Seguimentos , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Dor/cirurgia , Desenho de Prótese , Amplitude de Movimento ArticularRESUMO
Candidatus Dormibacterota is an uncultured bacterial phylum found predominantly in soil that is present in high abundances within cold desert soils. Here, we interrogate nine metagenome-assembled genomes (MAGs), including six new MAGs derived from soil metagenomes obtained from two eastern Antarctic sites. Phylogenomic and taxonomic analyses revealed these MAGs represent four genera and five species, representing two order-level clades within Ca. Dormibacterota. Metabolic reconstructions of these MAGs revealed the potential for aerobic metabolism, and versatile adaptations enabling persistence in the 'extreme' Antarctic environment. Primary amongst these adaptations were abilities to scavenge atmospheric H2 and CO as energy sources, as well as using the energy derived from H2 oxidation to fix atmospheric CO2 via the Calvin-Bassham-Benson cycle, using a RuBisCO type IE. We propose that these allow Ca. Dormibacterota to persist using H2 oxidation and grow using atmospheric chemosynthesis in terrestrial Antarctica. Fluorescence in situ hybridization revealed Ca. Dormibacterota to be coccoid cells, 0.3-1.4 µm in diameter, with some cells exhibiting the potential for a symbiotic or syntrophic lifestyle.
Assuntos
Metagenoma , Solo , Regiões Antárticas , Hibridização in Situ Fluorescente , Nutrientes , FilogeniaRESUMO
The canonical pathway for sucrose metabolism in haloarchaea utilizes a modified Embden-Meyerhof-Parnas pathway (EMP), in which ketohexokinase and 1-phosphofructokinase phosphorylate fructose released from sucrose hydrolysis. However, our survey of haloarchaeal genomes determined that ketohexokinase and 1-phosphofructokinase genes were not present in all species known to utilize fructose and sucrose, thereby indicating that alternative mechanisms exist for fructose metabolism. A fructokinase gene was identified in the majority of fructose- and sucrose-utilizing species, whereas only a small number possessed a ketohexokinase gene. Analysis of a range of hypersaline metagenomes revealed that haloarchaeal fructokinase genes were far more abundant (37 times) than haloarchaeal ketohexokinase genes. We used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase) and identified changes in protein abundance that relate to growth on sucrose. Proteins inferred to be involved in sucrose metabolism included fructokinase, a carbohydrate primary transporter, a putative sucrose hydrolase, and two uncharacterized carbohydrate-related proteins encoded in the same gene cluster as fructokinase and the transporter. Homologs of these proteins were present in the genomes of all haloarchaea that use sugars for growth. Enzymes involved in the semiphosphorylative Entner-Doudoroff pathway also had higher abundances in sucrose-grown H. litchfieldiae cells, consistent with this pathway functioning in the catabolism of the glucose moiety of sucrose. The study revises the current understanding of fundamental pathways for sugar utilization in haloarchaea and proposes alternatives to the modified EMP pathway used by haloarchaea for sucrose and fructose utilization.IMPORTANCE Our ability to infer the function that microorganisms perform in the environment is predicated on assumptions about metabolic capacity. When genomic or metagenomic data are used, metabolic capacity is inferred from genetic potential. Here, we investigate the pathways by which haloarchaea utilize sucrose. The canonical haloarchaeal pathway for fructose metabolism involving ketohexokinase occurs only in a small proportion of haloarchaeal genomes and is underrepresented in metagenomes. Instead, fructokinase genes are present in the majority of genomes/metagenomes. In addition to genomic and metagenomic analyses, we used proteomic analysis of Halohasta litchfieldiae (which encodes fructokinase but lacks ketohexokinase) and identified changes in protein abundance that related to growth on sucrose. In this way, we identified novel proteins implicated in sucrose metabolism in haloarchaea, comprising a transporter and various catabolic enzymes (including proteins that are annotated as hypothetical).
Assuntos
Euryarchaeota/metabolismo , Sacarose/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Euryarchaeota/genética , Frutoquinases/genética , Frutoquinases/metabolismo , Genoma Arqueal , Genômica , Glicólise , Metagenômica , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Fosforilação , ProteômicaRESUMO
Haloarchaea are heterotrophic members of the Archaea that thrive in hypersaline environments, often feeding off the glycerol that is produced as an osmolyte by eucaryotic Dunaliella during primary production. In this study we analyzed glycerol metabolism genes in closed genomes of haloarchaea and examined published data describing the growth properties of haloarchaea and experimental data for the enzymes involved. By integrating the genomic data with knowledge from the literature, we derived an understanding of the ecophysiology and evolutionary properties of glycerol catabolic pathways in haloarchaea.
Assuntos
Archaea/metabolismo , Glicerol/metabolismo , Archaea/genética , Clorófitas/metabolismoRESUMO
Halohasta litchfieldiae represents â¼ 44% and Halorubrum lacusprofundi â¼ 10% of the hypersaline, perennially cold (≥ -20°C) Deep Lake community in Antarctica. We used proteomics and microscopy to define physiological responses of these haloarchaea to growth at high (30°C) and low (10 and 4°C) temperatures. The proteomic data indicate that both species responded to low temperature by modifying their cell envelope including protein N-glycosylation, maintaining osmotic balance and translation initiation, and modifying RNA turnover and tRNA modification. Distinctions between the two species included DNA protection and repair strategies (e.g. roles of UspA and Rad50), and metabolism of glycerol and pyruvate. For Hrr. lacusprofundi, low temperature led to the formation of polyhydroxyalkanoate-like granules, with granule formation occurring by an unknown mechanism. Hrr. lacusprofundi also formed biofilms and synthesized high levels of Hsp20 chaperones. Hht. litchfieldiae was characterized by an active CRISPR system, and elevated levels of the core gene expression machinery, which contrasted markedly to the decreased levels of Hrr. lacusprofundi. These findings greatly expand the understanding of cellular mechanisms of cold adaptation in psychrophilic archaea, and provide insight into how Hht. litchfieldiae gains dominance in Deep Lake.
Assuntos
Adaptação Fisiológica/fisiologia , Biofilmes/crescimento & desenvolvimento , Membrana Celular/química , Temperatura Baixa , Halorubrum/fisiologia , Proteínas de Membrana/metabolismo , Regiões Antárticas , Reparo do DNA/genética , Glicosilação , Proteínas de Choque Térmico HSP20/metabolismo , Halorubrum/genética , Halorubrum/metabolismo , Lagos , Poli-Hidroxialcanoatos/metabolismo , Proteômica , RNA/biossínteseRESUMO
A novel non-phototrophic, marine, sulfur-oxidizing bacterium, strain S-1T, was isolated from a coastal salt marsh in Massachusetts, USA. Cells are Gram-stain-negative vibrios motile by means of a single polar unsheathed flagellum. S-1T is an obligate microaerophile with limited metabolic capacity. It grows chemolithoautotrophically utilizing sulfide and thiosulfate as electron donors, converting these compounds to sulfate, and the Calvin-Benson-Bassham cycle for carbon fixation. Cells of S-1T did not grow on any of a large number of organic carbon sources and there was no evidence for chemoorganoheterotrophic growth. Cells produced internal sulfur globules during growth on sulfide and thiosulfate. S-1T is strongly diazotrophic, as demonstrated by 15N2 fixation and acetylene reduction activity by cells when a fixed nitrogen source is absent from the growth medium. The marine nature of this organism is evident from its ability to grow in 10 to 100â% artificial seawater but not at lower concentrations and NaCl alone cannot substitute for sea salts. The major cellular fatty acids are C16â:â1ω7c, C16â:â0, and C18â:â1ω7c. Phosphatidylethanolamine and phosphatidylglycerol are the major polar lipids. Q8 is the only respiratory quinone. S-1T genomic DNA has a G+C content of 67.6 mol%. Based on its 16S rRNA gene sequence, S-1T shows the closest phylogenetic relationship to non-phototrophic species within the family Thioalkalispiraceae of the class Gammaproteobacteria. The name Endothiovibrio diazotrophicus is proposed for this organism, with S-1T as the type strain (ATCC BAA-1439T=JCM 17961T).
Assuntos
Gammaproteobacteria/classificação , Fixação de Nitrogênio , Filogenia , Microbiologia da Água , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Massachusetts , Nitrogênio/metabolismo , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/metabolismoRESUMO
UNLABELLED: Deep Lake in the Vestfold Hills is hypersaline and the coldest system in Antarctica known to support microbial growth (temperatures as low as -20°C). It represents a strong experimental model because the lake supports a low-complexity community of haloarchaea, with the three most abundant species totaling â¼72%. Moreover, the dominant haloarchaea are cultivatable, and their genomes are sequenced. Here we use metaproteomics linked to metagenome data and the genome sequences of the isolates to characterize the main pathways, trophic strategies, and interactions associated with resource utilization. The dominance of the most abundant member, Halohasta litchfieldiae, appears to be predicated on competitive utilization of substrates (e.g., starch, glycerol, and dihydroxyacetone) produced by Dunaliella, the lake's primary producer, while also possessing diverse mechanisms for acquiring nitrogen and phosphorus. The second most abundant member, strain DL31, is proficient in degrading complex proteinaceous matter. Hht. litchfieldiae and DL31 are inferred to release labile substrates that are utilized by Halorubrum lacusprofundi, the third most abundant haloarchaeon in Deep Lake. The study also linked genome variation to specific protein variants or distinct genetic capacities, thereby identifying strain-level variation indicative of specialization. Overall, metaproteomics revealed that rather than functional differences occurring at different lake depths or through size partitioning, the main lake genera possess major trophic distinctions, and phylotypes (e.g., strains of Hht. litchfieldiae) exhibit a more subtle level of specialization. This study highlights the extent to which the lake supports a relatively uniform distribution of taxa that collectively possess the genetic capacity to effectively exploit available nutrients throughout the lake. IMPORTANCE: Life on Earth has evolved to colonize a broad range of temperatures, but most of the biosphere (â¼85%) exists at low temperatures (≤5°C). By performing unique roles in biogeochemical cycles, environmental microorganisms perform functions that are critical for the rest of life on Earth to survive. Cold environments therefore make a particularly important contribution to maintaining healthy, stable ecosystems. Here we describe the main physiological traits of the dominant microorganisms that inhabit Deep Lake in Antarctica, the coldest aquatic environment known to support life. The hypersaline system enables the growth of halophilic members of the Archaea: haloarchaea. By analyzing proteins of samples collected from the water column, we determined the functions that the haloarchaea were likely to perform. This study showed that the dominant haloarchaea possessed distinct lifestyles yet formed a uniform community throughout the lake that was collectively adept at using available light energy and diverse organic substrates for growth.
Assuntos
Archaea/química , Archaea/classificação , Proteínas Arqueais/análise , Biota , Lagos/microbiologia , Proteoma/análise , Regiões Antárticas , Archaea/genética , Lagos/química , Metagenoma , SalinidadeRESUMO
Deep Lake in Antarctica is a globally isolated, hypersaline system that remains liquid at temperatures down to -20 °C. By analyzing metagenome data and genomes of four isolates we assessed genome variation and patterns of gene exchange to learn how the lake community evolved. The lake is completely and uniformly dominated by haloarchaea, comprising a hierarchically structured, low-complexity community that differs greatly to temperate and tropical hypersaline environments. The four Deep Lake isolates represent distinct genera (â¼85% 16S rRNA gene similarity and â¼73% genome average nucleotide identity) with genomic characteristics indicative of niche adaptation, and collectively account for â¼72% of the cellular community. Network analysis revealed a remarkable level of intergenera gene exchange, including the sharing of long contiguous regions (up to 35 kb) of high identity (â¼100%). Although the genomes of closely related Halobacterium, Haloquadratum, and Haloarcula (>90% average nucleotide identity) shared regions of high identity between species or strains, the four Deep Lake isolates were the only distantly related haloarchaea to share long high-identity regions. Moreover, the Deep Lake high-identity regions did not match to any other hypersaline environment metagenome data. The most abundant species, tADL, appears to play a central role in the exchange of insertion sequences, but not the exchange of high-identity regions. The genomic characteristics of the four haloarchaea are consistent with a lake ecosystem that sustains a high level of intergenera gene exchange while selecting for ecotypes that maintain sympatric speciation. The peculiarities of this polar system restrict which species can grow and provide a tempo and mode for accentuating gene exchange.
Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma Arqueal/fisiologia , Halobacteriaceae/genética , Lagos/microbiologia , Microbiologia da Água , Regiões Antárticas , Metagenoma , RNA Arqueal/genética , RNA Ribossômico 16S/genéticaRESUMO
Mast cells are tissue-resident cells best known for their role in allergy and host defence against helminth parasites. They are involved in responses against other pathogenic infections, wound healing and inflammatory disease. Committed mast cell progenitors are released from the bone marrow into the circulation, from where they are recruited into tissues to complete their maturation under the control of locally produced cytokines and growth factors. Directed migration occurs at distinct stages of the mast cell life-cycle and is associated with successive up- and downregulation of cell surface adhesion molecules and chemoattractant receptors as the cells mature. This article discusses some of the recent advances in our understanding of the mechanisms underlying mast cell recruitment.
Assuntos
Moléculas de Adesão Celular/imunologia , Movimento Celular/imunologia , Hipersensibilidade/imunologia , Imunidade Inata , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Mastócitos , Infecções por Nematoides/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Moléculas de Adesão Celular/metabolismo , Microambiente Celular , Quimiocinas/imunologia , Quimiocinas/metabolismo , Humanos , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Nematoides/imunologia , Infecções por Nematoides/metabolismo , Infecções por Nematoides/parasitologia , Infecções por Nematoides/patologia , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Transdução de Sinais/imunologiaRESUMO
A method for the recovery of whole-cell protein extracts from biomass on membrane filters is provided here. The protein extraction method is ideal for biomass captured by filtration of large water volumes, including seawater from marine environments. The protein extraction method includes both chemical disruption and physical disruption to lyse cells and release protein for subsequent metaproteomic analysis.
Assuntos
Filtração , Água do Mar , Filtração/métodos , Água do Mar/microbiologia , Microbiota , Proteômica/métodos , Biomassa , Proteínas de Bactérias/isolamento & purificação , Organismos Aquáticos , Proteínas/isolamento & purificação , Proteínas/análiseRESUMO
Survival and growth strategies of Antarctic endolithic microbes residing in Earth's driest and coldest desert remain virtually unknown. From 109 endolithic microbiomes, 4539 metagenome-assembled genomes were generated, 49.3 % of which were novel candidate bacterial species. We present evidence that trace gas oxidation and atmospheric chemosynthesis may be the prevalent strategies supporting metabolic activity and persistence of these ecosystems at the fringe of life and the limits of habitability.
Assuntos
Bactérias , Microbiota , Regiões Antárticas , Bactérias/genética , Bactérias/metabolismo , Metagenoma , MetagenômicaRESUMO
Heterotrophic marine bacteria play key roles in remineralizing organic matter generated from primary production. However, far more is known about which groups are dominant than about the cellular processes they perform in order to become dominant. In the Southern Ocean, eukaryotic phytoplankton are the dominant primary producers. In this study we used metagenomics and metaproteomics to determine how the dominant bacterial and archaeal plankton processed bloom material. We examined the microbial community composition in 14 metagenomes and found that the relative abundance of Flavobacteria (dominated by Polaribacter) was positively correlated with chlorophyll a fluorescence, and the relative abundance of SAR11 was inversely correlated with both fluorescence and Flavobacteria abundance. By performing metaproteomics on the sample with the highest relative abundance of Flavobacteria (Newcomb Bay, East Antarctica) we defined how Flavobacteria attach to and degrade diverse complex organic material, how they make labile compounds available to Alphaproteobacteria (especially SAR11) and Gammaproteobacteria, and how these heterotrophic Proteobacteria target and utilize these nutrients. The presence of methylotrophic proteins for archaea and bacteria also indicated the importance of metabolic specialists. Overall, the study provides functional data for the microbial mechanisms of nutrient cycling at the surface of the coastal Southern Ocean.
Assuntos
Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Metagenômica , Proteômica , Regiões Antárticas , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Clorofila/análise , Clorofila/metabolismo , Clorofila A , Eucariotos/metabolismo , Flavobacteriaceae/classificação , Processos Heterotróficos , Filogenia , Fitoplâncton/metabolismo , Plâncton/genética , Plâncton/metabolismo , Proteobactérias/metabolismo , Água do Mar/microbiologiaRESUMO
We performed a metagenomic survey (6.6 Gbp of 454 sequence data) of Southern Ocean (SO) microorganisms during the austral summer of 2007-2008, examining the genomic signatures of communities across a latitudinal transect from Hobart (44°S) to the Mertz Glacier, Antarctica (67°S). Operational taxonomic units (OTUs) of the SAR11 and SAR116 clades and the cyanobacterial genera Prochlorococcus and Synechococcus were strongly overrepresented north of the Polar Front (PF). Conversely, OTUs of the Gammaproteobacterial Sulfur Oxidizer-EOSA-1 (GSO-EOSA-1) complex, the phyla Bacteroidetes and Verrucomicrobia and order Rhodobacterales were characteristic of waters south of the PF. Functions enriched south of the PF included a range of transporters, sulfur reduction and histidine degradation to glutamate, while branched-chain amino acid transport, nucleic acid biosynthesis and methionine salvage were overrepresented north of the PF. The taxonomic and functional characteristics suggested a shift of primary production from cyanobacteria in the north to eukaryotic phytoplankton in the south, and reflected the different trophic statuses of the two regions. The study provides a new level of understanding about SO microbial communities, describing the contrasting taxonomic and functional characteristics of microbial assemblages either side of the PF.