Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739790

RESUMO

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Assuntos
Migração Animal , Aves , Especiação Genética , Animais , Migração Animal/fisiologia , Aves/genética , Aves/fisiologia , Aves/classificação , Ecossistema , Altitude , Evolução Biológica
2.
Environ Res ; 249: 118229, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325785

RESUMO

Per- and polyfluoroalkyl substances (PFAS) in the environment pose persistent and complex threats to human and wildlife health. Around the world, PFAS point sources such as military bases expose thousands of populations of wildlife and game species, with potentially far-reaching implications for population and ecosystem health. But few studies shed light on the extent to which PFAS permeate food webs, particularly ecologically and taxonomically diverse communities of primary and secondary consumers. Here we conducted >2000 assays to measure tissue-concentrations of 17 PFAS in 23 species of mammals and migratory birds at Holloman Air Force Base (AFB), New Mexico, USA, where wastewater catchment lakes form biodiverse oases. PFAS concentrations were among the highest reported in animal tissues, and high levels have persisted for at least three decades. Twenty of 23 species sampled at Holloman AFB were heavily contaminated, representing middle trophic levels and wetland to desert microhabitats, implicating pathways for PFAS uptake: ingestion of surface water, sediments, and soil; foraging on aquatic invertebrates and plants; and preying upon birds or mammals. The hazardous long carbon-chain form, perfluorooctanosulfonic acid (PFOS), was most abundant, with liver concentrations averaging >10,000 ng/g wet weight (ww) in birds and mammals, respectively, and reaching as high 97,000 ng/g ww in a 1994 specimen. Perfluorohexanesulfonic acid (PFHxS) averaged thousands of ng/g ww in the livers of aquatic birds and littoral-zone house mice, but one order of magnitude lower in the livers of upland desert rodent species. Piscivores and upland desert songbirds were relatively uncontaminated. At control sites, PFAS levels were strikingly lower on average and different in composition. In sum, legacy PFAS at this desert oasis have permeated local aquatic and terrestrial food webs across decades, severely contaminating populations of resident and migrant animals, and exposing people via game meat consumption and outdoor recreation.


Assuntos
Aves , Monitoramento Ambiental , Fluorocarbonos , Animais , New Mexico , Fluorocarbonos/análise , Humanos , Aves/metabolismo , Mamíferos , Poluentes Ambientais/análise , Cadeia Alimentar , Clima Desértico , Exposição Ambiental
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33731475

RESUMO

Geographic turnover in community composition is created and maintained by eco-evolutionary forces that limit the ranges of species. One such force may be antagonistic interactions among hosts and parasites, but its general importance is unknown. Understanding the processes that underpin turnover requires distinguishing the contributions of key abiotic and biotic drivers over a range of spatial and temporal scales. Here, we address these challenges using flexible, nonlinear models to identify the factors that underlie richness (alpha diversity) and turnover (beta diversity) patterns of interacting host and parasite communities in a global biodiversity hot spot. We sampled 18 communities in the Peruvian Andes, encompassing ∼1,350 bird species and ∼400 hemosporidian parasite lineages, and spanning broad ranges of elevation, climate, primary productivity, and species richness. Turnover in both parasite and host communities was most strongly predicted by variation in precipitation, but secondary predictors differed between parasites and hosts, and between contemporary and phylogenetic timescales. Host communities shaped parasite diversity patterns, but there was little evidence for reciprocal effects. The results for parasite communities contradicted the prevailing view that biotic interactions filter communities at local scales while environmental filtering and dispersal barriers shape regional communities. Rather, subtle differences in precipitation had strong, fine-scale effects on parasite turnover while host-community effects only manifested at broad scales. We used these models to map bird and parasite turnover onto the ecological gradients of the Andean landscape, illustrating beta-diversity hot spots and their mechanistic underpinnings.


Assuntos
Biodiversidade , Ecossistema , Hemípteros/parasitologia , Interações Hospedeiro-Parasita , Animais , Hemípteros/classificação , Hemípteros/genética , Dinâmica não Linear , Filogenia
4.
Ecol Lett ; 26(7): 1223-1236, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178017

RESUMO

Predictable trait variation across environments suggests shared adaptive responses via repeated genetic evolution, phenotypic plasticity or both. Matching of trait-environment associations at phylogenetic and individual scales implies consistency between these processes. Alternatively, mismatch implies that evolutionary divergence has changed the rules of trait-environment covariation. Here we tested whether species adaptation alters elevational variation in blood traits. We measured blood for 1217 Andean hummingbirds of 77 species across a 4600-m elevational gradient. Unexpectedly, elevational variation in haemoglobin concentration ([Hb]) was scale independent, suggesting that physics of gas exchange, rather than species differences, determines responses to changing oxygen pressure. However, mechanisms of [Hb] adjustment did show signals of species adaptation: Species at either low or high elevations adjusted cell size, whereas species at mid-elevations adjusted cell number. This elevational variation in red blood cell number versus size suggests that genetic adaptation to high altitude has changed how these traits respond to shifts in oxygen availability.


Assuntos
Altitude , Oxigênio , Animais , Filogenia , Aves/fisiologia , Fenótipo
5.
Am Nat ; 201(5): 741-754, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130238

RESUMO

AbstractThe extent to which species ranges reflect intrinsic physiological tolerances is a major question in evolutionary ecology. To date, consensus has been hindered by the limited tractability of experimental approaches across most of the tree of life. Here, we apply a macrophysiological approach to understand how hematological traits related to oxygen transport shape elevational ranges in a tropical biodiversity hot spot. Along Andean elevational gradients, we measured traits that affect blood oxygen-carrying capacity-total and cellular hemoglobin concentration and hematocrit, the volume percentage of red blood cells-for 2,355 individuals of 136 bird species. We used these data to evaluate the influence of hematological traits on elevational ranges. First, we asked whether the sensitivity of hematological traits to changes in elevation is predictive of elevational range breadth. Second, we asked whether variance in hematological traits changed as a function of distance to the nearest elevational range limit. We found that birds showing greater hematological sensitivity had broader elevational ranges, consistent with the idea that a greater acclimatization capacity facilitates elevational range expansion. We further found reduced variation in hematological traits in birds sampled near their elevational range limits and at high absolute elevations, patterns consistent with intensified natural selection, reduced effective population size, or compensatory changes in other cardiorespiratory traits. Our findings suggest that constraints on hematological sensitivity and local genetic adaptation to oxygen availability promote the evolution of the narrow elevational ranges that underpin tropical montane biodiversity.


Assuntos
Biodiversidade , Aves , Humanos , Animais , Aves/fisiologia , Fenótipo , Oxigênio , Ecologia , Altitude
6.
Oecologia ; 195(2): 435-451, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33484348

RESUMO

Turnover in species composition between sites, or beta diversity, is a critical component of species diversity that is typically influenced by geography, environment, and biotic interactions. Quantifying turnover is particularly challenging, however, in multi-host, multi-parasite assemblages where undersampling is unavoidable, resulting in inflated estimates of turnover and uncertainty about its spatial scale. We developed and implemented a framework using null models to test for community turnover in avian haemosporidian communities of three sky islands in the southwestern United States. We screened 776 birds for haemosporidian parasites from three genera (Parahaemoproteus, Plasmodium, and Leucocytozoon) by amplifying and sequencing a mitochondrial DNA barcode. We detected infections in 280 birds (36.1%), sequenced 357 infections, and found a total of 99 parasite haplotypes. When compared to communities simulated from a regional pool, we observed more unique, single-mountain haplotypes and fewer haplotypes shared among three mountain ranges than expected, indicating that haemosporidian communities differ to some degree among adjacent mountain ranges. These results were robust even after pruning datasets to include only identical sets of host species, and they were consistent for two of the three haemosporidian genera. The two more distant mountain ranges were more similar to each other than the one located centrally, suggesting that the differences we detected were due to stochastic colonization-extirpation dynamics. These results demonstrate that avian haemosporidian communities of temperate-zone forests differ on relatively fine spatial scales between adjacent sky islands. Null models are essential tools for testing the spatial scale of turnover in complex, undersampled, and poorly known systems.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Animais , Haemosporida/genética , Ilhas , Filogenia , Sudoeste dos Estados Unidos
7.
Integr Comp Biol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830806

RESUMO

Many bird species fly at high altitudes for short periods and/or shift seasonally in altitude during migration, but little is known about the physiology of these behaviors. Transient high-altitude flight, or short-term flight at extreme altitudes, is a strategy used by lowland-native birds, often in the absence of topographic barriers. Altitudinal migration, or seasonal roundtrip movement in altitude between the breeding and non-breeding seasons, is a form of migration that occurs as a regular part of the annual cycle and results in periods of seasonal residency at high altitudes. Despite their nuanced differences, these two behaviors share a common challenge: Exposure to reduced oxygen environments during at least part of the migratory journey. In this perspective piece, we compare what is known about the physiology of oxygen transport during transient high-altitude flight and altitudinal migration by highlighting case studies and recent conceptual advances from work on captive and wild birds. We aim to open avenues for integrative research on the ecology, evolution, and physiology of high-flying and mountain-climbing birds.

8.
Ecol Evol ; 12(8): e9152, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35928797

RESUMO

Using low-coverage whole-genome sequencing, analysis of vocalizations, and inferences from natural history, we document a first-generation hybrid between a rose-breasted grosbeak (Pheucticus ludovicianus) and a scarlet tanager (Piranga olivacea). These two species occur sympatrically throughout much of eastern North America, although were not previously known to interbreed. Following the field identification of a putative hybrid, we use genetic and bioacoustic data to show that a rose-breasted grosbeak was the maternal parent and a scarlet tanager was the paternal parent of the hybrid, whose song was similar to the latter species. These two species diverged >10 million years ago, and thus it is surprising to find a hybrid formed under natural conditions in the wild. Notably, the hybrid has an exceptionally heterozygous genome, with a conservative estimate of a heterozygous base every 100 bp. The observation that this hybrid of such highly divergent parental taxa has survived until adulthood serves as another example of the capacity for hybrid birds to survive with an exceptionally divergent genomic composition.

9.
Mol Ecol Resour ; 20(1): 14-28, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31507097

RESUMO

Metatranscriptomics is a powerful method for studying the composition and function of complex microbial communities. The application of metatranscriptomics to multispecies parasite infections is of particular interest, as research on parasite evolution and diversification has been hampered by technical challenges to genome-scale DNA sequencing. In particular, blood parasites of vertebrates are abundant and diverse although they often occur at low infection intensities and exist as multispecies infections, rendering the isolation of genomic sequence data challenging. Here, we use birds and their diverse haemosporidian parasites to illustrate the potential for metatranscriptome sequencing to generate large quantities of genome-wide sequence data from multiple blood parasite species simultaneously. We used RNA-sequencing of 24 blood samples from songbirds in North America to show that metatranscriptomes can yield large proportions of haemosporidian protein-coding gene repertoires even when infections are of low intensity (<0.1% red blood cells infected) and consist of multiple parasite taxa. By bioinformatically separating host and parasite transcripts and assigning them to the haemosporidian genus of origin, we found that transcriptomes detected ~23% more total parasite infections across all samples than were identified using microscopy and DNA barcoding. For single-species infections, we obtained data for >1,300 loci from samples with as low as 0.03% parasitaemia, with the number of loci increasing with infection intensity. In total, we provide data for 1,502 single-copy orthologous loci from a phylogenetically diverse set of 33 haemosporidian mitochondrial lineages. The metatranscriptomic approach described here has the potential to accelerate ecological and evolutionary research on haemosporidians and other diverse parasites.


Assuntos
Doenças das Aves/parasitologia , Sangue/parasitologia , Genômica/métodos , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Animais , Doenças das Aves/sangue , Haemosporida/classificação , Haemosporida/genética , Filogenia , Infecções Protozoárias em Animais/sangue , Aves Canoras/sangue , Aves Canoras/parasitologia , Transcriptoma
10.
Int J Parasitol ; 49(6): 437-448, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30910465

RESUMO

Haemosporidian parasites of birds are ubiquitous in terrestrial ecosystems, but their coevolutionary dynamics remain poorly understood. If species turnover in parasites occurs at a finer scale than turnover in hosts, widespread hosts would encounter diverse parasites, potentially diversifying as a result. Previous studies have shown that some wide-ranging hosts encounter varied haemosporidian communities throughout their range, and vice-versa. More surveys are needed to elucidate mechanisms that underpin spatial patterns of diversity in this complex multi-host multi-parasite system. We sought to understand how and why a community of avian haemosporidian parasites varies in abundance and composition across elevational transects in eight sky islands in southwestern North America. We tested whether bird community composition, environment, or geographic distance explain haemosporidian parasite species turnover in a widespread host that harbors a diverse haemosporidian community, the Audubon's Warbler (Setophaga auduboni). We tested predictors of infection using generalized linear models, and predictors of bird and parasite community dissimilarity using generalized dissimilarity modeling. Predictors of infection differed by parasite genus: Parahaemoproteus was predicted by elevation and climate, Leucocytozoon varied idiosyncratically among mountains, and Plasmodium was unpredictable, but rare. Parasite turnover was nearly three-fold higher than bird turnover and was predicted by elevation, climate, and bird community composition, but not geographic distance. Haemosporidian communities vary strikingly at fine spatial scales (hundreds of kilometers), across which the bird community varies only subtly. The finer scale of turnover among parasites implies that their ranges may be smaller than those of their hosts. Avian host species should encounter different parasite species in different parts of their ranges, resulting in spatially varying selection on host immune systems. The fact that parasite turnover was predicted by bird turnover, even when considering environmental characteristics, implies that host species or their phylogenetic history plays a role in determining which parasite species will be present in a community.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/fisiologia , Infecções Protozoárias em Animais/parasitologia , Aves Canoras/parasitologia , Altitude , Animais , Distribuição Binomial , Biodiversidade , Intervalos de Confiança , DNA de Protozoário/isolamento & purificação , Clima Desértico , Florestas , Haemosporida/classificação , Haplótipos , Funções Verossimilhança , Modelos Lineares , Dinâmica não Linear , Filogenia , Infecções Protozoárias em Animais/epidemiologia , Análise de Regressão , Sudoeste dos Estados Unidos , Análise Espacial
11.
PeerJ ; 5: e3700, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828279

RESUMO

Avian malaria and related haemosporidian parasites (genera Haemoproteus, Plasmodium, and Leucocytozoon) affect bird demography, species range limits, and community structure, yet they remain unsurveyed in most bird communities and populations. We conducted a community-level survey of these vector-transmitted parasites in New Mexico, USA, to describe their diversity, abundance, and host associations. We focused on the breeding-bird community in the transition zone between piñon-juniper woodland and ponderosa pine forests (elevational range: 2,150-2,460 m). We screened 186 birds representing 49 species using both standard PCR and microscopy techniques to detect infections of all three avian haemosporidian genera. We detected infections in 68 out of 186 birds (36.6%), the highest proportion of which were infected with Haemoproteus (20.9%), followed by Leucocytozoon (13.4%), then Plasmodium (8.0%). We sequenced mtDNA for 77 infections representing 43 haplotypes (25 Haemoproteus, 12 Leucocytozoon, 6 Plasmodium). When compared to all previously known haplotypes in the MalAvi and GenBank databases, 63% (27) of the haplotypes we recovered were novel. We found evidence for host specificity at the avian clade and species level, but this specificity was variable among parasite genera, in that Haemoproteus and Leucocytozoon were each restricted to three avian groups (out of six), while Plasmodium occurred in all groups except non-passerines. We found striking variation in infection rate among host species, with nearly universal infection among vireos and no infection among nuthatches. Using rarefaction and extrapolation, we estimated the total avian haemosporidian diversity to be 70 haplotypes (95% CI [43-98]); thus, we may have already sampled ∼60% of the diversity of avian haemosporidians in New Mexico pine forests. It is possible that future studies will find higher diversity in microhabitats or host species that are under-sampled or unsampled in the present study. Fortunately, this study is fully extendable via voucher specimens, frozen tissues, blood smears, parasite images, and documentation provided in open-access databases (MalAvi, GenBank, and ARCTOS).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa