Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
New Phytol ; 240(6): 2513-2529, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37604200

RESUMO

Understanding the long-term impact of projected climate change on tropical rainforests is critical given their central role in the Earth's system. Palaeoecological records can provide a valuable perspective on this problem. Here, we examine the effects of past climatic changes on the dominant forest type of Southeast Asia - lowland dipterocarp forest. We use a range of proxies extracted from a 1400-yr-old lacustrine sedimentary sequence from north-eastern Philippines to determine long-term vegetation responses of lowland dipterocarp forest, including its dominant tree group dipterocarps, to changes in precipitation, fire and nutrient availability over time. Our results show a positive relationship between dipterocarp pollen accumulation rates (PARs) and leaf wax hydrogen isotope values, which suggests a negative effect of drier conditions on dipterocarp abundance. Furthermore, we find a positive relationship between dipterocarp PARs and the proxy for phosphorus availability, which suggests phosphorus controls the productivity of these keystone trees on longer time scales. Other pollen taxa show widely varying relationships with the abiotic factors, demonstrating a high diversity of plant functional responses. Our findings provide novel insights into lowland dipterocarp forest responses to changing climatic conditions in the past and highlight potential impacts of future climate change on this globally important ecosystem.


Assuntos
Mudança Climática , Ecossistema , Clima Tropical , Florestas , Árvores/fisiologia , Fósforo
2.
Ecol Lett ; 21(6): 814-825, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29601664

RESUMO

Plants and animals influence biomass production and nutrient cycling in terrestrial ecosystems; however, their relative importance remains unclear. We assessed the extent to which mega-herbivore species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Britain and Ireland, when two-thirds of the region's mega-herbivore species went extinct. Warmer temperatures, plant-soil and plant-plant interactions, and reduced burning contributed to the expansion of woody plants and declining nitrogen availability in our five study ecosystems. Shrub biomass was consistently one of the strongest predictors of ecosystem change, equalling or exceeding the effects of other biotic and abiotic factors. In contrast, there was relatively little evidence for mega-herbivore control on plant community composition and nitrogen availability. The ability of plants to determine the fate of terrestrial ecosystems during periods of global environmental change may therefore be greater than previously thought.


Assuntos
Ecossistema , Plantas , Animais , Biomassa , Herbivoria , Irlanda , Nitrogênio , Solo
3.
Ecol Appl ; 25(5): 1290-302, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26485956

RESUMO

The local ecological footprinting tool (LEFT) uses globally available databases, modeling, and algorithms to, remotely assess locally important ecological features across landscapes based on five criteria: biodiversity (beta-diversity), vulnerability (threatened species), fragmentation, connectivity, and resilience. This approach can be applied to terrestrial landscapes at a 300-m resolution within a given target area. Input is minimal (latitude and longitude) and output is a computer-generated report and series of maps that both individually and synthetically depict the relative value of each ecological criteria. A key question for any such tool, however, is how representative is the remotely obtained output compared to what is on the ground. Here, we present the results from comparing remotely- vs. field-generated outputs from the LEFT tool on two distinct study areas for beta-diversity and distribution of threatened species (vulnerability), the two fields computed by LEFT for which such an approach is feasible. The comparison method consists of a multivariate measure of similarity between two fields based on discrete wavelet transforms, and reveals consistent agreement across a wide range of spatial scales. These results suggest that remote assessment tools such as LEFT hold great potential for determining key ecological features across landscapes and for being utilized in preplanning biodiversity assessment tools.


Assuntos
Biodiversidade , Astronave , Cidades , Bases de Dados Factuais , Monitoramento Ambiental , Incerteza
4.
Ecol Lett ; 17(2): 144-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24382356

RESUMO

The giant tortoises of the Galápagos have become greatly depleted since European discovery of the islands in the 16th Century, with populations declining from an estimated 250 000 to between 8000 and 14 000 in the 1970s. Successful tortoise conservation efforts have focused on species recovery, but ecosystem conservation and restoration requires a better understanding of the wider ecological consequences of this drastic reduction in the archipelago's only large native herbivore. We report the first evidence from palaeoecological records of coprophilous fungal spores of the formerly more extensive geographical range of giant tortoises in the highlands of Santa Cruz Island. Upland tortoise populations on Santa Cruz declined 500-700 years ago, likely the result of human impact or possible climatic change. Former freshwater wetlands, a now limited habitat-type, were found to have converted to Sphagnum bogs concomitant with tortoise loss, subsequently leading to the decline of several now-rare or extinct plant species.


Assuntos
Biodiversidade , Tartarugas , Áreas Alagadas , Animais , Carvão Vegetal , Equador , Fezes/microbiologia , Plantas , Esporos Fúngicos/isolamento & purificação
6.
Biol Lett ; 9(1): 20121029, 2013 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-23221877

RESUMO

A meeting on Biodiversity Technologies was held by the Biodiversity Institute, Oxford on the 27-28 of September 2012 at the Department of Zoology, University of Oxford. The symposium brought together 36 speakers from North America, Australia and across Europe, presenting the latest research on emerging technologies in biodiversity science and conservation. Here we present a perspective on the general trends emerging from the symposium.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Acústica/instrumentação , Telefone Celular/instrumentação , Telefone Celular/estatística & dados numéricos , Bases de Dados Factuais/estatística & dados numéricos , Inglaterra , Técnicas Genéticas/instrumentação , Técnicas Genéticas/estatística & dados numéricos , Genômica/métodos
7.
Environ Toxicol Chem ; 42(6): 1212-1228, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971460

RESUMO

While chemicals are vital to modern society through materials, agriculture, textiles, new technology, medicines, and consumer goods, their use is not without risks. Unfortunately, our resources seem inadequate to address the breadth of chemical challenges to the environment and human health. Therefore, it is important we use our intelligence and knowledge wisely to prepare for what lies ahead. The present study used a Delphi-style approach to horizon-scan future chemical threats that need to be considered in the setting of chemicals and environmental policy, which involved a multidisciplinary, multisectoral, and multinational panel of 25 scientists and practitioners (mainly from the United Kingdom, Europe, and other industrialized nations) in a three-stage process. Fifteen issues were shortlisted (from a nominated list of 48), considered by the panel to hold global relevance. The issues span from the need for new chemical manufacturing (including transitioning to non-fossil-fuel feedstocks); challenges from novel materials, food imports, landfills, and tire wear; and opportunities from artificial intelligence, greater data transparency, and the weight-of-evidence approach. The 15 issues can be divided into three classes: new perspectives on historic but insufficiently appreciated chemicals/issues, new or relatively new products and their associated industries, and thinking through approaches we can use to meet these challenges. Chemicals are one threat among many that influence the environment and human health, and interlinkages with wider issues such as climate change and how we mitigate these were clear in this exercise. The horizon scan highlights the value of thinking broadly and consulting widely, considering systems approaches to ensure that interventions appreciate synergies and avoid harmful trade-offs in other areas. We recommend further collaboration between researchers, industry, regulators, and policymakers to perform horizon scanning to inform policymaking, to develop our ability to meet these challenges, and especially to extend the approach to consider also concerns from countries with developing economies. Environ Toxicol Chem 2023;42:1212-1228. © 2023 Crown copyright and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article is published with the permission of the Controller of HMSO and the King's Printer for Scotland.


Assuntos
Inteligência Artificial , Poluição Ambiental , Humanos , Ecotoxicologia , Agricultura , Europa (Continente)
8.
New Phytol ; 193(1): 150-164, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21988516

RESUMO

• The extent to which plants exert an influence over ecosystem processes, such as nitrogen cycling and fire regimes, is still largely unknown. It is also unclear how such processes may be dependent on the prevailing environmental conditions. • Here, we applied mechanistic models of plant-environment interactions to palaeoecological time series data to determine the most likely functional relationships of Empetrum (crowberry) and Betula (birch) with millennial-scale changes in climate, fire activity, nitrogen cycling and herbivore density in an Irish heathland. • Herbivory and fire activity preferentially removed Betula from the landscape. Empetrum had a positive feedback on fire activity, but the effect of Betula was slightly negative. Nitrogen cycling was not strongly controlled by plant population dynamics. Betula had a greater temperature-dependent population growth rate than Empetrum; thus climate warming promoted Betula expansion into the heathland and this led to reduced fire activity and greater herbivory, which further reinforced Betula dominance. • Differences in population growth response to warming were responsible for an observed shift to an alternative community state with contrasting forms of ecosystem functioning. Self-reinforcing feedback mechanisms--which often protect plant communities from invasion--may therefore be sensitive to climate warming, particularly in arctic regions that are dominated by cold-adapted plant populations.


Assuntos
Mudança Climática , Ecossistema , Ericaceae/fisiologia , Modelos Biológicos , Modelos Estatísticos , Pólen/fisiologia , Dinâmica Populacional , Fatores de Tempo
9.
Ecology ; 92(4): 805-12, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21661543

RESUMO

The Galápagos Islands are globally renowned for their ecological value and as a world symbol of scientific discovery; however the native biodiversity of this unique region is currently under threat. One of the primary concerns is the detrimental impact of approximately 750 nonnative plants introduced over the last 500 years of human presence in the archipelago. In addition to these known introduced species, there are an additional 62 vascular plants classified as "doubtful natives," where native status remains unclear. To help address the questions of provenance regarding these doubtfully native species and their impact on highland ecosystems over the past 500-1000 years, we analyzed plant macrofossils in sedimentary records. Appropriate species classification (native or introduced) was determined using baseline data of species presence on the islands. We confirmed that six plants (Ageratum conyzoides, Solanum americanum, Ranunculus flagelliformis, Brickellia diffusa, Galium canescens, and Anthephora hermaphrodita) once considered doubtful natives or introduced are actually native to the Galápagos flora. These results have relevance not just for the Galápagos but also many other oceanic islands in demonstrating the application of palaeobotanical data to conserving and restoring native biodiversity.


Assuntos
Ecossistema , Espécies Introduzidas , Plantas/classificação , Equador , Fósseis , Geografia , Fatores de Tempo
10.
Biol Lett ; 5(6): 821-5, 2009 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19605388

RESUMO

Madagascar's rainforests are among the most biodiverse in the world. Understanding the population dynamics of important species within these forests in response to past climatic variability provides valuable insight into current and future species composition. Here, we use a population-level approach to analyse palaeoecological records over the last 5300 years to understand how populations of Symphonia cf. verrucosa became locally extinct in some rainforest fragments along the southeast coast of Madagascar in response to rapid climate change, yet persisted in others. Our results indicate that regional (climate) variability contributed to synchronous decline of S. cf. verrucosa populations in these forests. Superimposed on regional fluctuations were local processes that could have contributed or mitigated extinction. Specifically, in the forest with low soil nutrients, population model predictions indicated that there was coexistence between S. cf. verrucosa and Erica spp., but in the nutrient-rich forest, interspecific effects between Symphonia and Erica spp. may have pushed Symphonia to extinction at the peak of climatic change. We also demonstrate that Symphonia is a good indicator of a threshold event, exhibiting erratic fluctuations prior to and long after the critical climatic point has passed.


Assuntos
Mudança Climática , Clusiaceae , Ecossistema , Extinção Biológica , Fósseis , Modelos Biológicos , Ericaceae , Madagáscar , Myrica , Dinâmica Populacional
11.
Science ; 366(6471)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31831642

RESUMO

The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.


Assuntos
Conservação dos Recursos Naturais , Atividades Humanas/tendências , Qualidade de Vida , Planeta Terra , Humanos , Crescimento Demográfico
12.
Ecology ; 89(7): 1893-907, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18705376

RESUMO

The pine-dominated forests of west-central Mexico are internationally recognized for their high biodiversity, and some areas are protected through various conservation measures including prohibition of human activity. In this region, however, there is evidence for human settlement dating back to ca. AD 1200. It is therefore unclear whether the present forest composition and structure are part of a successional stage following use by indigenous human populations during the past, or due to natural processes, such as climate. We present a study reconstructing the vegetation dynamics of pine-dominated forest over the past 4200 years using paleoecological techniques. Results from fossil pollen and charcoal indicate that, in this region, pine-dominated forests are the native vegetation type and not anthropogenically derived secondary succession. The predominant driving mechanism for the expansion of pine-dominated forest appears to be intervals of aridity and naturally induced burning. A close association is noted between pine abundance and longer-term climatic trends, including intervals of aridity between ca. 4200 and 2500, 1200 and 850, and 500 and 200 cal yr BP and shorter-term trends. Evident periodicity occurs in pine and Poaceae abundance every 80 years. These short-term quasi-periodic oscillations have been recorded in a number of lake and ocean sediments in Mexico and are thought to be linked to solar forcing resulting in drought cycles that occur at approximately the same time intervals.


Assuntos
Ecossistema , Pinus/fisiologia , Árvores/fisiologia , Clima , Fósseis , Atividades Humanas , Humanos , México , Paleontologia , Pólen , Dinâmica Populacional , Solo , Fatores de Tempo
13.
Ecol Evol ; 8(15): 7574-7587, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30151172

RESUMO

Floral foraging resources are valuable for pollinator conservation on farmland, and their provision is encouraged by agri-environment schemes in many countries. Across Europe, wildflower seed mixtures are widely sown on farmland to encourage pollinators, but the extent to which key pollinator groups such as solitary bees exploit and benefit from these resources is unclear. We used high-throughput sequencing of 164 pollen samples extracted from the brood cells of six common cavity-nesting solitary bee species (Osmia bicornis, Osmia caerulescens, Megachile versicolor, Megachile ligniseca, Megachile centuncularis and Hylaeus confusus) which are widely distributed across the UK and Europe. We documented their pollen use across 19 farms in southern England, UK, revealing their forage plants and examining the structure of their pollen transport networks. Of the 32 plant species included currently in sown wildflower mixes, 15 were recorded as present within close foraging range of the bees on the study farms, but only Ranunculus acris L. was identified within the pollen samples. Rosa canina L. was the most commonly found of the 23 plant species identified in the pollen samples, suggesting that, in addition to providing a nesting resource for Megachile leafcutter bees, it may be an important forage plant for these species. Higher levels of connectance and nestedness were characteristic of pollen transport networks on farms with abundant floral resources, which may increase resilience to species loss. Our data suggest that plant species promoted currently by agri-environment schemes are not optimal for solitary bee foraging. If a diverse community of pollinators is to be supported on UK and European farmland, additional species such as R. canina should be encouraged to meet the foraging requirements of solitary bees.

14.
Sci Data ; 5: 180186, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30226483

RESUMO

The two datasets outlined in this paper contain information related to (a) the local impacts of biofuel feedstock production, and (b) the factors that influence the adoption and/or sustained use of ethanol stoves in southern Africa. The first dataset was generated through extensive household surveys around four operational jatropha and sugarcane production sites in Malawi, Mozambique, and Swaziland. This project aimed to examine the local impacts of the most prominent modes of existing or intended biofuel feedstock production in southern Africa. The resulting dataset contains information about impacts on rural livelihoods, ecosystem services, food security and poverty alleviation. The second dataset is the outcome of research into factors that influence the adoption and sustained use of ethanol stoves. This dataset was collected through a household survey in Maputo city where the only large-scale ethanol stove dissemination programme in Africa has been implemented.


Assuntos
Biocombustíveis , Produção Agrícola , África Austral , Etanol , Características da Família
15.
Ecol Lett ; 10(8): 673-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17594422

RESUMO

Models examining the present-day relationship between macro-scale patterns in terrestrial species richness and variables of water and energy demonstrate that a combined water-energy model is a good predictor of richness in mid-to-high latitude regions. However, the power of the individual water and energy variables to explain this richness through time has never been explored. Here, we assess how well energy and water can predict long-term variations in plant richness using a 320,000-year fossil pollen data set from Hungary. Results demonstrate that a combined water-energy model best explains the variation in plant diversity through time. However, this long temporal record also demonstrates that amplitude of energy variation appears to be a strong determinant of richness. Decreased richness correlates with increased climate variability and certain species appear to be more susceptible according to their ecological traits. These findings have important implications for predicting richness at times of increasing climate variability.


Assuntos
Biodiversidade , Clima , Água Doce/química , Modelos Teóricos , Plantas/genética , Atividade Solar , Simulação por Computador , Europa (Continente) , Fósseis , Isótopos de Oxigênio/análise , Pólen
16.
Nat Plants ; 1: 15072, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27250007

RESUMO

American cotton (Gossypium hirsutum L.), transformed with Bacillus thuringiensis Cry genes (Bt G. hirsutum) that confer resistance to lepidopteran pests, is extensively cultivated worldwide. In India, transgenic Bt G. hirsutum was commercially released in 2002 and by 2014 95% of farmers had adopted Bt G. hirsutum(1). The economic benefits of Bt G. hirsutum over non-Bt G. hirsutum are well documented and include increase in yields, increase in farmers' net revenue and reduction in pesticide application against lepidopteran pests(2-9). However, it is unclear to what extent irrigation influences the performance of Bt G. hirsutum on smallholder farming in India, and if, in the absence of irrigation, growing Bt G. hirsutum provides greater economic benefits for Indian smallholder farmers compared with growing the Asiatic cotton Gossypium arboreum L. Here, we compare the economic impact of growing Bt G. hirsutum with growing G. arboreum under rainfed conditions in the Indian state of Maharashtra, and show that G. arboreum can generate similar net revenue, and thus similar economic benefits for smallholder farmers compared with growing Bt G. hirsutum. We also compare the economic impact of growing Bt G. hirsutum under rainfed conditions with growing Bt G. hirsutum under irrigated conditions and show that even though Bt G. hirsutum yields increase with irrigation, the net revenue does not significantly increase because farmers using irrigation spend significantly more than farmers growing Bt G. hirsutum without irrigation. We conclude that our data provide a broader insight into how socio-economic data needs to be incorporated into agro-ecological data when planning strategies to improve cotton farming in India.

17.
J Ecol ; 103(1): 16-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26120202

RESUMO

1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5.Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.

19.
Nat Commun ; 5: 3906, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24844297

RESUMO

The time taken for forested tropical ecosystems to re-establish post-disturbance is of widespread interest. Yet to date there has been no comparative study across tropical biomes to determine rates of forest re-growth, and how they vary through space and time. Here we present results from a meta-analysis of palaeoecological records that use fossil pollen as a proxy for vegetation change over the past 20,000 years. A total of 283 forest disturbance and recovery events, reported in 71 studies, are identified across four tropical regions. Results indicate that forests in Central America and Africa generally recover faster from past disturbances than those in South America and Asia, as do forests exposed to natural large infrequent disturbances compared with post-climatic and human impacts. Results also demonstrate that increasing frequency of disturbance events at a site through time elevates recovery rates, indicating a degree of resilience in forests exposed to recurrent past disturbance.


Assuntos
Conservação dos Recursos Naturais , Fósseis , Desenvolvimento Vegetal , Pólen , Floresta Úmida , África , Ásia , Biodiversidade , América Central , Ecossistema , América do Sul , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa