Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34109419

RESUMO

Signal plasticity can maximize the usefulness of costly animal signals such as the electric organ discharges (EODs) of weakly electric fishes. Some species of the order Gymnotiformes rapidly alter their EOD amplitude and duration in response to circadian cues and social stimuli. How this plasticity is maintained across related species with different degrees of signal complexity is poorly understood. In one genus of weakly electric gymnotiform fish (Brachyhypopomus), only one species, B. bennetti, produces a monophasic signal while all other species emit complex biphasic or multiphasic EOD waveforms produced by two overlapping but asynchronous action potentials in each electric organ cell (electrocyte). One consequence of this signal complexity is the suppression of low-frequency signal content that is detectable by electroreceptive predators. In complex EODs, reduction of the EOD amplitude and duration during daytime inactivity can decrease both predation risk and the metabolic cost of EOD generation. We compared EOD plasticity and its underlying physiology in Brachyhypopomus focusing on B. bennetti. We found that B. bennetti exhibits minimal EOD plasticity, but that its electrocytes retained vestigial mechanisms of biphasic signaling and vestigial mechanisms for modulating the EOD amplitude. These results suggest that this species represents a transitional phenotypic state within a clade where signal complexity and plasticity were initially gained and then lost. Signal mimicry, mate recognition and sexual selection are potential factors maintaining the monophasic EOD phenotype in the face of detection by electroreceptive predators.


Assuntos
Peixe Elétrico , Gimnotiformes , Potenciais de Ação , Animais , Órgão Elétrico , Transdução de Sinais
2.
Oecologia ; 194(1-2): 177-191, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32940775

RESUMO

Body size, trophic position (TP), and trophic niche width are important elements of food webs; however, there is still debate regarding their interrelationships. Most studies have tested these correlations using datasets restricted to carnivores and bivariate models that disregard potential indirect effects of other factors, their interactions, and phylogeny. We analyzed relationships among TP, consumer size, maximum food item size, food item size variation (a proxy for trophic niche width), and two other traits (gut length and mouth width) using confirmatory path analysis of an extensive dataset for freshwater fishes that encompass both carnivorous and non-carnivorous species. Consumer size was associated with maximum food size, food size variation, mouth width, and gut length, all of which mediated indirect relationships between body size and TP. Mouth gape was associated with maximum food size, and consumers that fed on larger food items had higher TP. Consumers with relatively long guts generally fed on small and homogeneous food items near the base of the food web. Models were consistent whether or not accounting for phylogeny, but varied according to trophic guilds. However, the body size of both carnivorous and non-carnivorous was not directly associated with TP. Therefore, the incorporation of functional traits and their intermediate pathways is critical for understanding size-based trophic relationships of animals that encompass diverse feeding strategies. Our results caution approaches that rely on body size as a surrogate for TP, especially in systems where plants and detritus are consumed directly by a significant number of animals, such as in most freshwater ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Tamanho Corporal , Carnivoridade , Peixes , Comportamento Predatório
3.
Ecology ; 100(2): e02570, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30657592

RESUMO

The effects of environmental seasonality on food web structure have been notoriously understudied in empirical ecology. Here, we focus on seasonal changes in one key attribute of a food web, consumer trophic position. We ask whether fishes inhabiting tropical river-floodplain ecosystems behave as seasonal omnivores, by shifting their trophic positions in relation to the annual flood pulse, or whether they feed at the same trophic position all year, as much empirical work implicitly assumes. Using dietary data from the Tonle Sap Lake, Cambodia, and a literature review, we find evidence that some fishes, especially small piscivores, increased consumption of invertebrates and/or plant material during the wet season, as predicted. However, nitrogen stable isotope (δ15 N) data for 26 Tonle Sap fishes, spanning a broader range of functional groups, uncovered high variation in seasonal trophic position responses among species (0 to ±0.52 trophic positions). Based on these findings, species respond to the flood pulse differently. Diverse behavioral responses to seasonality, underpinned by spatiotemporal variation at multiple scales, could be central for rerouting matter and energy flow in these dynamic ecosystems. Seasonally flexible foraging behaviors warrant further study given their potential influence on food web dynamics in a range of fluctuating environments.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Peixes , Invertebrados , Isótopos de Nitrogênio/análise
4.
Oecologia ; 186(4): 1069-1078, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29455256

RESUMO

Despite low in situ primary productivity, tropical oligotrophic rivers support highly diverse fish assemblages and productive fisheries. This raises the question, what energy sources support fish production in these ecosystems? We sampled fish and food resources in the floodplain of a nearly pristine, large, oligotrophic river in western Amazonia. We combined data from stomach contents and stable isotopes to test the hypothesis that floodplain forests sustain fisheries in tropical oligotrophic rivers. Analysis of stomach contents from > 800 specimens of 12 omnivorous fish species demonstrated that during the annual flood, forest plant matter dominated diets. Yet, our isotope mixing models estimated that arthropods from the forest canopy made a greater proportional contribution to fish biomass. Most of these arthropods are entirely terrestrial and, therefore, serve as trophic links between forests and fishes. Our results suggest that forest vegetation, particularly fruits, may provide much of the energy supporting metabolism and arthropods contribute significant amounts of protein for somatic growth. Moreover, the importance of terrestrial arthropods in support of fish biomass in oligotrophic rivers depends on interactions between riparian vegetation, terrestrial arthropods and flood pulse dynamics affecting accessibility of arthropods to fishes. The apparent paradox of high fish diversity in an oligotrophic river with low primary productivity may be explained, at least partially, by dynamic terrestrial-aquatic trophic linkages. This study further emphasizes the importance of seasonally flooded forests for sustaining fisheries in the Amazon.


Assuntos
Ecossistema , Rios , Animais , Brasil , Peixes , Cadeia Alimentar
5.
Am Nat ; 190(5): 601-616, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29053363

RESUMO

Widespread niche convergence suggests that species can be organized according to functional trait combinations to create a framework analogous to a periodic table. We compiled ecological data for lizards to examine patterns of global and regional niche diversification, and we used multivariate statistical approaches to develop the beginnings for a periodic table of niches. Data (50+ variables) for five major niche dimensions (habitat, diet, life history, metabolism, defense) were compiled for 134 species of lizards representing 24 of the 38 extant families. Principal coordinates analyses were performed on niche dimensional data sets, and species scores for the first three axes were used as input for a principal components analysis to ordinate species in continuous niche space and for a regression tree analysis to separate species into discrete niche categories. Three-dimensional models facilitate exploration of species positions in relation to major gradients within the niche hypervolume. The first gradient loads on body size, foraging mode, and clutch size. The second was influenced by metabolism and terrestrial versus arboreal microhabitat. The third was influenced by activity time, life history, and diet. Natural dichotomies are activity time, foraging mode, parity mode, and habitat. Regression tree analysis identified 103 cases of extreme niche conservatism within clades and 100 convergences between clades. Extending this approach to other taxa should lead to a wider understanding of niche evolution.


Assuntos
Evolução Biológica , Ecossistema , Características de História de Vida , Lagartos/fisiologia , Animais , Metabolismo Energético , Modelos Biológicos , Filogenia , Análise de Componente Principal
6.
Ecology ; 98(1): 21-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27984648

RESUMO

Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems.


Assuntos
Biodiversidade , Ecossistema , Peixes , Animais , Rios , Estações do Ano
7.
Glob Chang Biol ; 22(7): 2440-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26582547

RESUMO

Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large-scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional data sets for fishes in river and stream reaches, we ask two questions: (1) does a negative relationship exist between native and non-native species richness and (2) do non-native species originate from higher diversity systems. A negative relationship between native and non-native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non-native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species-rich systems inhibit establishment of generalist non-native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively unimpacted by human actions, and may explain the conflicting relationship between native and non-native species richness found at different spatial scales.


Assuntos
Biodiversidade , Peixes , Espécies Introduzidas , Animais , Evolução Biológica , Ecossistema , Água Doce , Humanos , Dinâmica Populacional
8.
Ecol Lett ; 18(8): 737-751, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26096695

RESUMO

Ecology is often said to lack general theories sufficiently predictive for applications. Here, we examine the concept of a periodic table of niches and feasibility of niche classification schemes from functional trait and performance data. Niche differences and their influence on ecological patterns and processes could be revealed effectively by first performing data reduction/ordination analyses separately on matrices of trait and performance data compiled according to logical associations with five basic niche 'dimensions', or aspects: habitat, life history, trophic, defence and metabolic. Resultant patterns then are integrated to produce interpretable niche gradients, ordinations and classifications. Degree of scheme periodicity would depend on degrees of niche conservatism and convergence causing species clustering across multiple niche dimensions. We analysed a sample data set containing trait and performance data to contrast two approaches for producing niche schemes: species ordination within niche gradient space, and niche categorisation according to trait-value thresholds. Creation of niche schemes useful for advancing ecological knowledge and its applications will depend on research that produces functional trait and performance datasets directly related to niche dimensions along with criteria for data standardisation and quality. As larger databases are compiled, opportunities will emerge to explore new methods for data reduction, ordination and classification.


Assuntos
Evolução Biológica , Ecologia/métodos , Ecossistema , Animais , Peixes , Modelos Biológicos
9.
Environ Manage ; 56(4): 835-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092052

RESUMO

Recent literature reviews of bioassessment methods raise questions about use of least-impacted reference sites to characterize natural conditions that no longer exist within contemporary landscapes. We explore an alternate approach for bioassessment that uses species site occupancy data from museum archives as input for species distribution models (SDMs) stacked to predict species assemblages of freshwater fishes in Texas. When data for estimating reference conditions are lacking, deviation between richness of contemporary versus modeled species assemblages could provide a means to infer relative biological integrity at appropriate spatial scales. We constructed SDMs for 100 freshwater fish species to compare predicted species assemblages to data on contemporary assemblages acquired by four independent surveys that sampled 269 sites. We then compared site-specific observed/predicted ratios of the number of species at sites to scores from a multimetric index of biotic integrity (IBI). Predicted numbers of species were moderately to strongly correlated with the numbers observed by the four surveys. We found significant, though weak, relationships between observed/predicted ratios and IBI scores. SDM-based assessments identified patterns of local assemblage change that were congruent with IBI inferences; however, modeling artifacts that likely contributed to over-prediction of species presence may restrict the stand-alone use of SDM-derived patterns for bioassessment and therefore warrant examination. Our results suggest that when extensive standardized survey data that include reference sites are lacking, as is commonly the case, SDMs derived from generally much more readily available species site occupancy data could be used to provide a complementary tool for bioassessment.


Assuntos
Monitoramento Ambiental/métodos , Peixes/fisiologia , Água Doce , Modelos Teóricos , Animais , Dinâmica Populacional , Texas
10.
Ecology ; 95(1): 210-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24649660

RESUMO

In response to temporal changes in the quality and availability of food resources, consumers should adjust their foraging behavior in a manner that maximizes energy and nutrient intake and, when resources are limiting, minimizes dietary overlap with other consumers. Floodplains of the Amazon and its lowland tributaries are characterized by strong, yet predictable, hydrological seasonality, seasonal availability of fruits, seeds, and other food resources of terrestrial origin, and diverse assemblages of frugivorous fishes, including morphologically similar species of several characiform families. Here, we investigated how diets of frugivorous fishes in the Amazon change in response to fluctuations in food availability, and how this influences patterns of interspecific dietary overlap. We tested predictions from classical theories of foraging and resource competition by estimating changes in diet breadth and overlap across seasons. We monitored fruiting phenology to assess food availability, and surveyed local fish populations during three hydrological seasons in an oligotrophic river and an adjacent oxbow lake in the Colombian Amazon. We analyzed stomach contents and stable isotope data to evaluate temporal and interspecific relationships for dietary composition, breadth, and overlap. Diets of six species of characiform fishes representing three genera changed according to seasonal fluctuations in food availability, and patterns of diet breadth and interspecific overlap during the peak flood pulse were consistent with predictions of optimal foraging theory. During times of high fruit abundance, fishes consumed items to which their functional morphological traits seemed best adapted, potentially enhancing net energy and nutritional gains. As the annual flood pulse subsided and availability of forest food resources in aquatic habitats changed, there was not a consistent pattern of diet breadth expansion or compression. Nonetheless, shifts in both diet composition and stable isotope ratios of consumer tissues during this period resulted in trophic niche segregation in a pattern consistent with competition theory.


Assuntos
Comportamento Alimentar/fisiologia , Peixes/fisiologia , Frutas , Rios , Árvores , Animais , Ecossistema , Estações do Ano , Fatores de Tempo
11.
Bull Environ Contam Toxicol ; 93(1): 13-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24615506

RESUMO

Personal care products, pharmaceuticals, and other contaminants of emerging concern (CECs) in domestic wastewater treatment plant (WWTP) effluents can impact aquatic organisms. Health indicators were compared for mosquitofish (Gambusia affinis) collected above and below WWTP discharges from five streams in suburban areas of the Houston metropolitan area, Texas, USA. Specimens were evaluated for reproductive, morphological, and histological indicators. Several indicators revealed significant spatial and temporal variation; however, possibly because of their mobility, fish collected upstream and downstream of wastewater treatment plants did not reveal consistent trends based on the endpoints examined. CEC concentrations in water samples from stream reaches below WWTP discharges were quantified for the first time in the Houston Metropolitan area. The 18 CECs detected in stream water had concentrations lower than values currently reported to impact fish. Future research should examine caged fish at each site and fish collected over longer stream reaches that receive successive discharges from WWTP and stronger CEC gradients.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Ciprinodontiformes/fisiologia , Monitoramento Ambiental , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Masculino , Reprodução/efeitos dos fármacos , Texas , Poluentes Químicos da Água/análise
12.
Ecology ; 104(5): e4024, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36883720

RESUMO

Popular as aquarium fish, armored catfishes from South America (Pterygoplichthys spp.) have been introduced and become invasive in tropical and subtropical regions worldwide. These ecosystem engineers can deplete basal resources (e.g., periphyton and detritus), with potential negative effects for native fauna. We studied the trophic ecology of fishes in the Usumacinta River Basin, Guatemala, where Pterygoplichthys is now widespread and locally abundant. We analyzed stable isotopes (δ13 C, δ15 N) in fish tissues and basal resources to assess the potential impact of Pterygoplichthys on the trophic ecology of six co-occurring native fishes that feed at a similar trophic level (Astyanax aeneus, Dorosoma petenense, Thorichthys pasionis, Oscura heterospila, Poecilia mexicana, and Gambusia sexradiata). The study was conducted during the dry season in the La Pasion (LPR; high invasion) and San Pedro (SPR; low invasion) rivers. We compared isotopic spaces occupied by native fish and Pterygoplichthys, estimated isotopic overlap, and evaluated the trophic displacement of native species. We also evaluated the relationships of environmental factors, including the relative biomass of the invasive catfish, with δ13 C and δ15 N signatures. Except for P. mexicana, native species had lower isotopic overlap with the catfish in LPR. Native fish isotopic spaces were compressed and shifted toward higher trophic positions in LPR relative to SPR. Benthic food resources were important for Pterygoplichthys in both rivers, and water-column resources had greater relative importance (RI) for native species in LPR. Native fish δ13 C was significantly associated with Pterygoplichthys biomass, conductivity, and water flow velocity; and water depth and sedimentation had a significant association with native fish δ15 N. Findings provide evidence that invasive Pterygoplichthys, along with environmental factors, impact the trophic ecology of native fish in the Usumacinta Basin. Additional field research conducted over longer time periods and mesocosm experiments that account for fish assemblage and environmental variation could elucidate Pterygoplichthys impacts via food resource depletion or habitat alteration.


Populares como peces de acuario, los plecóstomos de América del Sur (Pterygoplichthys spp.) han sido introducidos y se han vuelto invasivos en regiones tropicales y subtropicales de todo el mundo. Estos ingenieros ecosistémicos pueden agotar los recursos basales (p. ej., perifiton y detritos), con posibles efectos negativos para la fauna nativa. En esta investigación estudiamos la ecología trófica de los peces en la cuenca del río Usumacinta, Guatemala, donde Pterygoplichthys se ha dispersado y es localmente abundante. Analizamos isótopos estables (δ13 C, δ15 N) en tejidos de peces y recursos basales para evaluar el impacto potencial de Pterygoplichthys en la ecología trófica de seis peces nativos que se alimentan a un nivel trófico similar (Astyanax aeneus, Dorosoma petenense, Thorichthys pasionis, Oscura heterospila, Poecilia mexicana y Gambusia sexradiata). El estudio se realizó en la temporada seca en los ríos La Pasión (LPR; alta invasión) y San Pedro (SPR; baja invasión). Comparamos el espacio isotópico ocupado por peces nativos y Pterygoplichthys, estimamos la superposición isotópica y evaluamos el desplazamiento trófico de las especies nativas. También evaluamos las relaciones de los factores ambientales, incluida la biomasa relativa del plecóstomo, con las señales isotópicas δ13 C y δ15 N. Con excepción de P. mexicana, las especies nativas tuvieron una menor superposición isotópica con el plecóstomo en LPR. En peces nativos se observó compresión y desplazamiento de espacios isotópicos hacia posiciones tróficas más altas en LPR en relación con SPR. Los recursos alimenticios bentónicos fueron importantes para Pterygoplichthys en ambos ríos, y los recursos de la columna de agua tuvieron mayor importancia relativa para las especies nativas en LPR. Los valores de δ13 C en peces nativos están significativamente asociados con la biomasa de Pterygoplichthys, la conductividad y la velocidad del flujo de agua; la profundidad del río y la sedimentación tuvieron una asociación significativa con los valores de δ15 N de peces nativos. Los hallazgos proporcionan evidencia de que Pterygoplichthys, junto con factores ambientales, impactan la ecología trófica de los peces nativos en la cuenca del Usumacinta. Investigación de campo adicional durante períodos de tiempo prolongados y experimentos de mesocosmos que integren dinámicas de ensamblaje de peces y variación ambiental podrían dilucidar los impactos de Pterygoplichthys a través del agotamiento de los recursos alimentarios o la alteración del hábitat.


Assuntos
Peixes-Gato , Ecossistema , Animais , Ecologia , Peixes , Biomassa , Isótopos de Nitrogênio/análise , Rios , Cadeia Alimentar
13.
BMC Evol Biol ; 12: 124, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22835218

RESUMO

BACKGROUND: The Neotropical catfish family Loricariidae contains over 830 species that display extraordinary variation in jaw morphologies but nonetheless reveal little interspecific variation from a generalized diet of detritus and algae. To investigate this paradox, we collected δ13C and δ15N stable isotope signatures from 649 specimens representing 32 loricariid genera and 82 species from 19 local assemblages distributed across South America. We calculated vectors representing the distance and direction of each specimen relative to the δ15N/δ13C centroid for its local assemblage, and then examined the evolutionary diversification of loricariids across assemblage isotope niche space by regressing the mean vector for each genus in each assemblage onto a phylogeny reconstructed from osteological characters. RESULTS: Loricariids displayed a total range of δ15N assemblage centroid deviation spanning 4.9‰, which is within the tissue-diet discrimination range known for Loricariidae, indicating that they feed at a similar trophic level and that δ15N largely reflects differences in their dietary protein content. Total range of δ13C deviation spanned 7.4‰, which is less than the minimum range reported for neotropical river fish communities, suggesting that loricariids selectively assimilate a restricted subset of the full basal resource spectrum available to fishes. Phylogenetic regression of assemblage centroid-standardized vectors for δ15N and δ13C revealed that loricariid genera with allopatric distributions in disjunct river basins partition basal resources in an evolutionarily conserved manner concordant with patterns of jaw morphological specialization and with evolutionary diversification via ecological radiation. CONCLUSIONS: Trophic partitioning along elemental/nutritional gradients may provide an important mechanism of dietary segregation and evolutionary diversification among loricariids and perhaps other taxonomic groups of apparently generalist detritivores and herbivores. Evolutionary patterns among the Loricariidae show a high degree of trophic niche conservatism, indicating that evolutionary lineage affiliation can be a strong predictor of how basal consumers segregate trophic niche space.


Assuntos
Evolução Biológica , Peixes-Gato/classificação , Animais , Isótopos de Carbono/análise , Peixes-Gato/anatomia & histologia , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Filogenia , América do Sul
14.
Sci Rep ; 12(1): 8417, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589859

RESUMO

Inland fisheries are an important source of protein and income for people in Africa. Their sustainable management can greatly benefit from identification of regional genetic stocks and characterization of their genetic diversity, but such information is lacking for most African freshwater fisheries. The African bonytongue, Heterotis niloticus, is an important component of inland fisheries in West Africa. Nigeria has the largest fishery for African bonytongues, representing ~ 86% of the global total. Recent declines in yields at some Nigerian locations, however, suggest current levels of exploitation may be unsustainable. Habitat degradation also may be impacting some stocks. Despite its commercial and nutritional importance, the African bonytongue has been the subject of scant genetic research to support management. We examined patterns of genetic diversity in natural populations of H. niloticus at four locations in Nigeria, including Kainji Lake, a reservoir on the Niger River in north-central Nigeria, and three southern localities (Ethiope River, Igbokoda River, and Epe Lagoon), as well fish from the Ouémé River delta near Porto Novo, Benin. Eighty-five specimens were genotyped for nine microsatellite-loci. Genetic diversity estimates were highest at Kainji Lake, and substantially lower at southern localities. High levels of genetic differentiation were detected between samples from Kainji Lake and those from southern localities. Low, yet significant FST values were observed among samples from southern Nigerian localities that were more differentiated from the sample from nearby coastal Benin. We thus recommend that African bonytongues from the five locations be considered distinct genetic stocks and managed accordingly.


Assuntos
Pesqueiros , Peixes , África Ocidental , Animais , Peixes/genética , Variação Genética , Humanos , Repetições de Microssatélites/genética , Nigéria
15.
Sci Total Environ ; 838(Pt 2): 155951, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588808

RESUMO

Hydropower is a threat to freshwater fishes. Despite a recent boom in dam construction, few studies have assessed their impact on mega-diverse tropical rivers. Using a before-after study design, we investigated the early impacts of the Belo Monte hydroelectric complex, the third-largest hydropower project in the world, on fishes of the Xingu River, a major clear-water tributary of the lower Amazon. We explored impacts across different river sectors (upstream, reservoir, reduced flow sector, and downstream) and spatial scales (individual sectors vs. all sectors combined) using joint species distribution models and different facets of diversity (taxonomic, functional, and phylogenetic). After 5 years of the Belo Monte operation, species richness declined ~12% in lentic and ~16% in lotic environments. Changes in abundance were of less magnitude (<4%). Effects were particularly negative for species of the families Serrasalmidae (mainly pacus), Anostomidae (headstanders), Auchenipteridae, and Pimelodidae (catfishes), whereas no taxonomic group consistently increased in richness or abundance. The reservoir and downstream sectors were the most impacted, with declines of ~24-29% in fish species richness, overall reductions in fish body size and trophic level, and a change in average body shape. Richness and abundance also declined in the reduced river flow, and changes in size, shape, and position of fins were observed. Relatively minor changes were found in the upstream sector. Variation in functional and phylogenetic diversity following river impoundment was subtle; however, across sectors, we found a reduction in functional divergence, indicating a decline in the abundance of species located near the extremities of community functional space. This may be the first sign of an environmental filtering process reducing functional diversity in the region. Greater changes in flow and habitats are expected as hydropower operations ramp up, and continued monitoring is warranted to understand the full scope and magnitude of ecological impacts.


Assuntos
Peixes , Rios , Animais , Biodiversidade , Ecossistema , Água Doce , Filogenia
16.
Ecology ; 92(11): 2056-62, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22164830

RESUMO

Photoautotrophs are generally considered to be the base of food webs, and habitats that lack light, such as caves, frequently rely on surface-derived carbon. Here we show, based on analysis of gut contents and stable isotope ratios of tissues (13C:12C and 15N:14N), that sulfur-oxidizing bacteria are directly consumed and assimilated by the fish Poecilia mexicana in a sulfide-rich cave stream in Tabasco state, Mexico. Our results provide evidence of a vertebrate deriving most of its organic carbon and nitrogen from in situ chemoautotrophic production, and reveals the importance of alternative energy production sources supporting animals in extreme environments.


Assuntos
Cadeia Alimentar , Sulfeto de Hidrogênio/metabolismo , Poecilia/metabolismo , Bactérias Redutoras de Enxofre/metabolismo , Animais , Cavernas , Comportamento Alimentar , Rios
17.
BMC Ecol Evol ; 21(1): 149, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330210

RESUMO

BACKGROUND: Environmental conditions on Earth are repeated in non-random patterns that often coincide with species from different regions and time periods having consistent combinations of morphological, physiological and behavioral traits. Observation of repeated trait combinations among species confronting similar environmental conditions suggest that adaptive trait combinations are constrained by functional tradeoffs within or across niche dimensions. In an earlier study, we assembled a high-resolution database of functional traits for 134 lizard species to explore ecological diversification in relation to five fundamental niche dimensions. Here we expand and further examine multivariate relationships in that dataset to assess the relative influence of niche dimensions on the distribution of species in 6-dimensional niche space and how these may deviate from distributions generated from null models. We then analyzed a dataset with lower functional-trait resolution for 1023 lizard species that was compiled from our dataset and a published database, representing most of the extant families and environmental conditions occupied by lizards globally. Ordinations from multivariate analysis were compared with null models to assess how ecological and historical factors have resulted in the conservation, divergence or convergence of lizard niches. RESULTS: Lizard species clustered within a functional niche volume influenced mostly by functional traits associated with diet, activity, and habitat/substrate. Consistent patterns of trait combinations within and among niche dimensions yielded 24 functional groups that occupied a total niche space significantly smaller than plausible spaces projected by null models. Null model tests indicated that several functional groups are strongly constrained by phylogeny, such as nocturnality in the Gekkota and the secondarily acquired sit-and-wait foraging strategy in Iguania. Most of the widely distributed and species-rich families contained multiple functional groups thereby contributing to high incidence of niche convergence. CONCLUSIONS: Comparison of empirical patterns with those generated by null models suggests that ecological filters promote limited sets of trait combinations, especially where similar conditions occur, reflecting both niche convergence and conservatism. Widespread patterns of niche convergence following ancestral niche diversification support the idea that lizard niches are defined by trait-function relationships and interactions with environment that are, to some degree, predictable and independent of phylogeny.


Assuntos
Lagartos , Animais , Evolução Biológica , Ecossistema , Humanos , Fenótipo , Filogenia
18.
Ambio ; 50(1): 85-94, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32040746

RESUMO

Freshwater ecosystems provide irreplaceable services for both nature and society. The quality and quantity of freshwater affect biogeochemical processes and ecological dynamics that determine biodiversity, ecosystem productivity, and human health and welfare at local, regional and global scales. Freshwater ecosystems and their associated riparian habitats are amongst the most biologically diverse on Earth, and have inestimable economic, health, cultural, scientific and educational values. Yet human impacts to lakes, rivers, streams, wetlands and groundwater are dramatically reducing biodiversity and robbing critical natural resources and services from current and future generations. Freshwater biodiversity is declining rapidly on every continent and in every major river basin on Earth, and this degradation is occurring more rapidly than in terrestrial ecosystems. Currently, about one third of all global freshwater discharges pass through human agricultural, industrial or urban infrastructure. About one fifth of the Earth's arable land is now already equipped for irrigation, including all the most productive lands, and this proportion is projected to surpass one third by midcentury to feed the rapidly expanding populations of humans and commensal species, especially poultry and ruminant livestock. Less than one fifth of the world's preindustrial freshwater wetlands remain, and this proportion is projected to decline to under one tenth by midcentury, with imminent threats from water transfer megaprojects in Brazil and India, and coastal wetland drainage megaprojects in China. The Living Planet Index for freshwater vertebrate populations has declined to just one third that of 1970, and is projected to sink below one fifth by midcentury. A linear model of global economic expansion yields the chilling prediction that human utilization of critical freshwater resources will approach one half of the Earth's total capacity by midcentury. Although the magnitude and growth of the human freshwater footprint are greater than is generally understood by policy makers, the news media, or the general public, slowing and reversing dramatic losses of freshwater species and ecosystems is still possible. We recommend a set of urgent policy actions that promote clean water, conserve watershed services, and restore freshwater ecosystems and their vital services. Effective management of freshwater resources and ecosystems must be ranked amongst humanity's highest priorities.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Brasil , China , Água Doce , Humanos , Índia
19.
Mol Phylogenet Evol ; 55(3): 1070-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20178851

RESUMO

Neotropical cichlid fishes comprise approximately 60 genera and at least 600 species, but despite this diversity, their phylogeny is only partially understood, which limits taxonomic, ecological and evolutionary research. We report the largest molecular phylogeny of Neotropical cichlids produced to date, combining data from three mitochondrial and two nuclear markers for 57 named genera and 154 species from South and Central America. Neotropical cichlids (subfamily Cichlinae) were strongly monophyletic and were grouped into two main clades in which the genera Retroculus (Tribe Retroculini) and Cichla (Cichlini) were sister to a monophyletic group containing all other lineages. This group included the tribes Chaetobranchini, Astronotini, Geophagini, Cichlasomatini and Heroini. Topological comparisons with previously published hypotheses indicated that our results are congruent with recent analyses of the tribe Cichlasomatini, but significantly more likely than published hypotheses for Geophagini, Heroini and the entire Cichlinae. Improved resolution and support are attributed to increased taxon sampling and to the addition of taxa never before included in phylogenetic analyses. Geophagini included two major subclades congruent with our own previous findings but more strongly supported; we also found a new and strongly supported sister-group relationship between Guianacara and Mazarunia. Cichlasomatini relationships were similar to recently proposed topologies, but contrastingly, we found a monophyletic Cichlasoma and support for a monophyletic grouping of the Aequidens diadema and A. tetramerus groups. Three basal South American Heroini lineages were recovered: (Hypselecara+Hoplarchus), Pterophyllum, and a grouping we refer to as mesonautines. Three other South American clades, caquetaines, Australoheros and the 'Cichlasoma'festae group, were nested within Central American clades. Most Heroini diversity was divided into two relatively well-supported large groups: the Southern Central American Clade, including clades herein referred to as nandopsines, caquetaines and amphilophines, and the Northern Central American Clade, including astatheroines, tomocichlines and herichthyines. Some of these groups have been previously identified, but often with different taxonomic compositions. Further resolution of Neotropical cichlid relationships, especially within the large amphilophine clade of Heroini, will require additional phylogenetic analysis. Nevertheless, the topology from this study provides a robust phylogenetic framework for studying evolutionary diversification in Neotropical cichlids. Significantly-short branches at the base of Geophagini and Heroini are compatible with early bursts of divergence that are characteristic of adaptive radiations. This pattern suggests diversification of Neotropical cichlid genera occurred rapidly, with subsequent convergent, adaptive ecomorphological diversification among and within South and Central American clades.


Assuntos
Ciclídeos/classificação , Ciclídeos/genética , Evolução Molecular , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , América Central , DNA Mitocondrial/genética , Geografia , Modelos Genéticos , Alinhamento de Sequência , Análise de Sequência de DNA , América do Sul , Clima Tropical
20.
Ambio ; 39(4): 344-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20799685

RESUMO

The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin's fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur.


Assuntos
Migração Animal , Ecossistema , Pesqueiros , Peixes , Rios , Animais , Sudeste Asiático , Indústrias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa