Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L536-L547, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098422

RESUMO

Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.


Assuntos
Fibrose Cística , Canais Epiteliais de Sódio , Humanos , Ratos , Ovinos , Animais , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico , Amilorida/farmacologia , Depuração Mucociliar/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística/tratamento farmacológico , Mucosa Respiratória
2.
Eur Respir J ; 58(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33766947

RESUMO

BACKGROUND: Interleukin (IL)-6 trans-signalling (IL-6TS) is emerging as a pathogenic mechanism in chronic respiratory diseases; however, the drivers of IL-6TS in the airways and the phenotypic characteristic of patients with increased IL-6TS pathway activation remain poorly understood. OBJECTIVE: Our aim was to identify and characterise COPD patients with increased airway IL-6TS and to elucidate the biological drivers of IL-6TS pathway activation. METHODS: We used an IL-6TS-specific sputum biomarker profile (soluble IL-6 receptor (sIL-6R), IL-6, IL-1ß, IL-8, macrophage inflammatory protein-1ß) to stratify sputum data from patients with COPD (n=74; Biomarkers to Target Antibiotic and Systemic Corticosteroid Therapy in COPD Exacerbation (BEAT-COPD)) by hierarchical clustering. The IL-6TS signature was related to clinical characteristics and sputum microbiome profiles. The induction of neutrophil extracellular trap formation (NETosis) and IL-6TS by Haemophilus influenzae were studied in human neutrophils. RESULTS: Hierarchical clustering revealed an IL-6TS-high subset (n=24) of COPD patients, who shared phenotypic traits with an IL-6TS-high subset previously identified in asthma. The subset was characterised by increased sputum cell counts (p=0.0001), persistent sputum neutrophilia (p=0.0004), reduced quality of life (Chronic Respiratory Questionnaire total score; p=0.008), and increased levels of pro-inflammatory mediators and matrix metalloproteinases in sputum. IL-6TS-high COPD patients showed an increase in Proteobacteria, with Haemophilus as the dominating genus. NETosis induced by H. influenzae was identified as a potential mechanism for increased sIL-6R levels. This was supported by a significant positive correlation between sIL-6R and NETosis markers in bronchoalveolar lavage fluid from COPD patients. CONCLUSION: IL-6TS pathway activation due to chronic colonisation with Haemophilus may be an important disease driver in a subset of COPD patients.


Assuntos
Armadilhas Extracelulares , Infecções por Haemophilus , Doença Pulmonar Obstrutiva Crônica , Infecções por Haemophilus/complicações , Humanos , Interleucina-6 , Qualidade de Vida , Escarro
3.
Clin Exp Allergy ; 51(2): 273-283, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33091192

RESUMO

BACKGROUND: Upper respiratory tract infections (URTIs) are important triggers for asthma exacerbations. We hypothesized that inhalation of the anti-viral cytokine, interferon (IFN)-ß, during URTI, could prevent these exacerbations. OBJECTIVE: To evaluate the efficacy of on-demand inhaled IFN-ß1a (AZD9412) to prevent severe asthma exacerbations following symptomatic URTI. METHODS: This was a randomized, double-blind, placebo-controlled trial in which patients with severe asthma (GINA 4-5; n = 121) reporting URTI symptoms were randomized to 14 days of once-daily nebulized AZD9412 or placebo. The primary endpoint was severe exacerbations during treatment. Secondary endpoints included 6-item asthma control questionnaire (ACQ-6) and lung function. Exploratory biomarkers included IFN-response markers in serum and sputum, blood leucocyte counts and serum inflammatory cytokines. RESULTS: Following a pre-planned interim analysis, the trial was terminated early due to an unexpectedly low exacerbation rate. Asthma worsenings were generally mild and tended to peak at randomization, possibly contributing to the lack of benefit of AZD9412 on other asthma endpoints. Numerically, AZD9412 did not reduce severe exacerbation rate, ACQ-6, asthma symptom scores or reliever medication use. AZD9412 improved lung function (morning peak expiratory flow; mPEF) by 19.7 L/min. Exploratory post hoc analyses indicated a greater mPEF improvement by AZD9412 in patients with high blood eosinophils (>0.3 × 109 /L) at screening and low serum interleukin-18 relative change at pre-treatment baseline. Pharmacodynamic effect of AZD9412 was confirmed using IFN-response markers. CONCLUSIONS & CLINICAL RELEVANCE: Colds did not have the impact on asthma patients that was expected and, due to the low exacerbation rate, the trial was stopped early. On-demand AZD9412 treatment did not numerically reduce the number of exacerbations, but did attenuate URTI-induced worsening of mPEF. Severe asthma patients with high blood eosinophils or low serum interleukin-18 response are potential subgroups for further investigation of inhaled IFN-ß1a.


Assuntos
Antivirais/uso terapêutico , Asma/tratamento farmacológico , Interferon beta-1a/uso terapêutico , Infecções Respiratórias/tratamento farmacológico , Administração por Inalação , Adulto , Asma/sangue , Asma/complicações , Asma/fisiopatologia , Citocinas/sangue , Progressão da Doença , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pico do Fluxo Expiratório/fisiologia , Infecções Respiratórias/sangue , Infecções Respiratórias/complicações , Infecções Respiratórias/fisiopatologia , Índice de Gravidade de Doença
4.
Am J Physiol Lung Cell Mol Physiol ; 308(1): L22-32, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361567

RESUMO

Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis and chronic bronchitis (CB). Rehydration by hypertonic saline is efficacious but suffers from a short duration of action. We tested whether epithelial sodium channel (ENaC) inhibition would rehydrate normal and dehydrated airways to increase mucociliary clearance (MCC) over a significant time frame. For this, we used a tool compound (Compound A), which displays nanomolar ENaC affinity and retention in the airway surface liquid (ASL). Using normal human bronchial epithelial cultures (HBECs) grown at an air-liquid interface, we evaluated in vitro potency and efficacy using short-circuit current (I(sc)) and ASL height measurements where it inhibited I(sc) and increased ASL height by ∼ 50% (0.052 µM at 6 h), respectively. The in vivo efficacy was investigated in a modified guinea pig tracheal potential difference model, where we observed an effective dose (ED50) of 5 µg/kg (i.t.), and by MCC measures in rats and sheep, where we demonstrated max clearance rates at 100 µg/kg (i.t.) and 75 µg/kg (i.t.), respectively. Acute cigarette smoke-induced ASL height depletion in HBECs was used to mimic the situation in patients with CB, and pretreatment prevented both cigarette smoke-induced ASL dehydration and lessened the decrease in ciliary beat frequency. Furthermore, when added after cigarette smoke exposure, Compound A increased the rate of ASL rehydration. In conclusion, Compound A demonstrated significant effects and a link between increased airway hydration, ciliary function, and MCC. These data support the hypothesis that ENaC inhibition may be efficacious in the restoration of mucus hydration and transport in patients with CB.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Muco/metabolismo , Mucosa Respiratória/metabolismo , Fumar/metabolismo , Animais , Transporte Biológico Ativo , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Feminino , Cobaias , Humanos , Ratos , Ratos Wistar , Mucosa Respiratória/patologia , Ovinos , Fumar/efeitos adversos , Fumar/patologia
5.
PLoS One ; 19(5): e0301845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787860

RESUMO

Differential white blood cell counts are frequently used in diagnosis, patient stratification, and treatment selection to optimize therapy responses. Referral laboratories are often used but challenged with use of different hematology platforms, variable blood shipping times and storage conditions, and the different sensitivities of specific cell types. To extend the scientific literature and knowledge on the temporal commutability of blood samples between hematology analyzers, we performed a comparative ex-vivo study using four of the most utilized commercial platforms, focusing on the assessment of eosinophils given its importance in asthma management. Whole blood from healthy volunteers with and without atopy (n = 6+6) and participants with eosinophilic asthma (n = 6) were stored under different conditions (at 4, 20, 30, and 37°C, with or without agitation) and analyzed at different time points (3, 6, 24, 48 and 72h post-sampling) in parallel on the Abbott CELL-DYN Sapphire, Beckman Coulter DxH900, Siemens ADVIA 2120i and Sysmex XN-1000V. In the same blood samples, eosinophil-derived neurotoxin (EDN), eosinophil activation and death markers were analyzed. All platforms gave comparable measurements of cell differentials on fresh blood within the same day of sampling. However, by 24 hours, significant temporal and temperature-dependent differences were observed, most markedly for eosinophils. None of the platforms performed perfectly across all temperatures tested during the 72 hours, showing that handling conditions should be optimized depending on the cell type of interest and the hematology analyzer. Neither disease status (healthy vs. asthma) nor agitation of the sample affected the cell quantification result or EDN release. The eosinophil activation markers measured by flow cytometry increased with time, were influenced by temperature, and were higher in those with asthma versus healthy participants. In conclusion, hematology analyzer, time window from sampling until analysis, and temperature conditions must be considered when analyzing blood cell differentials, particularly for eosinophils, via central labs to obtain counts comparable to the values obtained in freshly sampled blood.


Assuntos
Asma , Eosinófilos , Humanos , Asma/sangue , Asma/diagnóstico , Eosinófilos/citologia , Feminino , Masculino , Adulto , Contagem de Células Sanguíneas/instrumentação , Contagem de Células Sanguíneas/métodos , Contagem de Leucócitos/instrumentação , Contagem de Leucócitos/métodos , Pessoa de Meia-Idade , Hematologia/instrumentação , Hematologia/métodos
6.
Skin Health Dis ; 3(3): e209, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275428

RESUMO

Background: Janus Kinase (JAK) inhibition has recently demonstrated therapeutic efficacy in both restoring hair growth and resolving inflammation in Alopecia Areata (AA). These effects are dose dependent and mainly efficacious at ranges close to a questionable risk profile. Objectives: We explored the possibility to separate the beneficial and adverse effects of JAK inhibition by selectively inhibiting JAK1 and thereby avoiding side effects associated with JAK2 blockade. Methods: The C3H/HeJ mouse model of AA was used to demonstrate therapeutic efficacy in vivo with different regimens of a selection of JAK inhibitors in regards to systemic versus local drug exposure. Human peripheral blood lymphocytes were stimulated in vitro to demonstrate translation to the human situation. Results: We demonstrate that selective inhibition of JAK1 produces fast resolution of inflammation and complete restoration of hair growth in the C3H/HeJ mouse model of AA. Furthermore, we show that topical treatment does not restore hair growth and that treatment needs to be extended well beyond that of restored hair growth in order to reach treatment-free remission. For translatability to human disease, we show that cytokines involved in AA pathogenesis are similarly inhibited by selective JAK1 and pan-JAK inhibition in stimulated human peripheral lymphocytes and specifically in CD8+ T cells. Conclusion: This study demonstrates that systemic exposure is required for efficacy in AA and we propose that a selective JAK1 inhibitor will offer a treatment option with a superior safety profile to pan-JAK inhibitors for these patients.

7.
PLoS One ; 17(10): e0266310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223404

RESUMO

Airway epithelial damage is a common feature in respiratory diseases such as COPD and has been suggested to drive inflammation and progression of disease. These features manifest as remodeling and destruction of lung epithelial characteristics including loss of small airways which contributes to chronic airway inflammation. Histone deacetylase 6 (HDAC6) has been shown to play a role in epithelial function and dysregulation, such as in cilia disassembly, epithelial to mesenchymal transition (EMT) and oxidative stress responses, and has been implicated in several diseases. We thus used ACY-1083, an inhibitor with high selectivity for HDAC6, and characterized its effects on epithelial function including epithelial disruption, cytokine production, remodeling, mucociliary clearance and cell characteristics. Primary lung epithelial air-liquid interface cultures from COPD patients were used and the impacts of TNF, TGF-ß, cigarette smoke and bacterial challenges on epithelial function in the presence and absence of ACY-1083 were tested. Each challenge increased the permeability of the epithelial barrier whilst ACY-1083 blocked this effect and even decreased permeability in the absence of challenge. TNF was also shown to increase production of cytokines and mucins, with ACY-1083 reducing the effect. We observed that COPD-relevant stimulations created damage to the epithelium as seen on immunohistochemistry sections and that treatment with ACY-1083 maintained an intact cell layer and preserved mucociliary function. Interestingly, there was no direct effect on ciliary beat frequency or tight junction proteins indicating other mechanisms for the protected epithelium. In summary, ACY-1083 shows protection of the respiratory epithelium during COPD-relevant challenges which indicates a future potential to restore epithelial structure and function to halt disease progression in clinical practice.


Assuntos
Inibidores de Histona Desacetilases , Doença Pulmonar Obstrutiva Crônica , Citocinas/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Mucinas/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Blood Coagul Fibrinolysis ; 28(3): 244-253, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27428015

RESUMO

: Uncontrolled bleeding remains one of the leading causes of trauma-induced death. Treatment recommendations focus on fresh frozen plasma and blood cell transfusions, whereas plasma concentrates or single coagulation factors have been studied in recent years. The effect of recombinant human prothrombin factor II (rhFII, 8 mg/kg), activated recombinant human factor VII (rhFVIIa, 300 µg/kg), plasma-derived human fibrinogen (pdhFib) (200 mg/kg), activated prothrombin complex concentrate (aPCC, 40 IU/kg), a three-factor combination intended as a minimal PCC (8 mg/kg rhFII, 640 µg/kg recombinant human factor X (rhFX), and 12 µg/kg rhFVIIa), and vehicle were investigated in a porcine model of dilutional coagulopathy with uncontrolled bleeding. Survival time and blood loss were determined up to 120 min after induction of liver injury. Rotational thromboelastometry EXTEM coagulation time and maximum clot firmness, prothrombin time, thrombin-antithrombin complex (TAT), thrombin generation (endogenous thrombin potential, ETP) were measured at baseline, after dilution, drug administration, and end of experiment. rhFII, the three-factor combination, and aPCC significantly (P < 0.01) decreased blood loss vs. vehicle and rhFII also vs. fibrinogen (P < 0.05). Survival times increased significantly for rhFII, aPCC, rhFVIIa, and pdhFib vs. vehicle (P < 0.05), and, coagulation time, maximum clot firmness, and prothrombin time improved in all groups. TAT and ETP increased transiently for rhFII and three-factor combination, whereas persistently increased for aPCC. PdhFib and rhFVIIa did not increase TAT and ETP. rhFII decreased blood loss and improved hemostatic markers and survival. In vivo, thrombin generation (TAT) and potential to form thrombin (ETP) were transiently elevated by rhFII. Addition of rhFVIIa and rhFX to rhFII did not further improve hemostatic efficacy.


Assuntos
Transtornos da Coagulação Sanguínea/sangue , Testes de Coagulação Sanguínea/métodos , Hemorragia/sangue , Hemostáticos/farmacologia , Protrombina/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Suínos
9.
J Pulm Respir Med ; 2017(1)2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29938126

RESUMO

Elevation of blood glucose results in increased glucose in the fluid that lines the surface of the airways and this is associated with an increased susceptibility to infection with respiratory pathogens. Infection induces an inflammatory response in the lung, but how this is altered by hyperglycemia and how this affects glucose, lactate and cytokine concentrations in the airway surface liquid is not understood. We used Wild Type (WT) and glucokinase heterozygote (GK+/-) mice to investigate the effect of hyperglycemia, with and without LPS-induced inflammatory responses, on airway glucose, lactate, inflammatory cells and cytokines measured in Bronchoalveolar Lavage Fluid (BALF). We found that glucose and lactate concentrations in BALF were elevated in GK+/- compared to WT mice and that there was a direct correlation between blood glucose and BALF glucose concentrations. LPS challenge increased BALF inflammatory cell numbers and this correlated with decreased glucose and increased lactate concentrations although the effect was less in GK+/- compared to WT mice. All cytokines measured (except IL-2) increased in BALF with LPS challenge. However, concentrations of TNFα, INFγ, IL-1ß and IL-2 were less in GK+/- compared to WT mice. This study shows that the normal glucose/lactate environment of the airway surface liquid is altered by hyperglycemia and the inflammatory response. These data indicate that inflammatory cells utilize BALF glucose and that production of lactate and cytokines is compromised in hyperglycemic GK+/- mice.

10.
Br J Pharmacol ; 174(9): 836-847, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28192604

RESUMO

BACKGROUND AND PURPOSE: Hyperglycaemia increases glucose concentrations in airway surface liquid and increases the risk of pulmonary Pseudomonas aeruginosa infection. We determined whether reduction of blood and airway glucose concentrations by the anti-diabetic drug dapagliflozin could reduce P. aeruginosa growth/survival in the lungs of diabetic mice. EXPERIMENTAL APPROACH: The effect of dapagliflozin on blood and airway glucose concentration, the inflammatory response and infection were investigated in C57BL/6J (wild type, WT) or leptin receptor-deficient (db/db) mice, treated orally with dapagliflozin prior to intranasal dosing with LPS or inoculation with P. aeruginosa. Pulmonary glucose transport and fluid absorption were investigated in Wistar rats using the perfused fluid-filled lung technique. KEY RESULTS: Fasting blood, airway glucose and lactate concentrations were elevated in the db/db mouse lung. LPS challenge increased inflammatory cells in bronchoalveolar lavage fluid from WT and db/db mice with and without dapagliflozin treatment. P. aeruginosa colony-forming units (CFU) were increased in db/db lungs. Pretreatment with dapagliflozin reduced blood and bronchoalveolar lavage glucose concentrations and P. aeruginosa CFU in db/db mice towards those seen in WT. Dapagliflozin had no adverse effects on the inflammatory response in the mouse or pulmonary glucose transport or fluid absorption in the rat lung. CONCLUSION AND IMPLICATIONS: Pharmacological lowering of blood glucose with dapagliflozin effectively reduced P. aeruginosa infection in the lungs of diabetic mice and had no adverse pulmonary effects in the rat. Dapagliflozin has potential to reduce the use, or augment the effect, of antimicrobials in the prevention or treatment of pulmonary infection.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Glucosídeos/uso terapêutico , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Compostos Benzidrílicos/farmacologia , Glicemia/metabolismo , Líquido da Lavagem Broncoalveolar , Diabetes Mellitus Experimental/sangue , Glucosídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Ratos Wistar , Proteínas de Transporte de Sódio-Glucose/farmacologia , Proteínas de Transporte de Sódio-Glucose/uso terapêutico
11.
Pharmacol Res Perspect ; 3(3): e00134, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26236482

RESUMO

Although the anti-inflammatory role of the A2a receptor is well established, controversy remains with regard to the therapeutic value for A2a agonists in treatment of inflammatory lung diseases, also as a result of unwanted A2a-mediated cardiovascular effects. In this paper, we describe the discovery and characterization of a new, potent and selective A2a agonist (compound 2) with prolonged lung retention and limited systemic exposure following local administration. To support the lead optimization chemistry program with compound selection and profiling, multiple in vitro and in vivo assays were used, characterizing compound properties, pharmacodynamics (PD), and drug concentrations. Particularly, pharmacokinetic-PD modeling was applied to quantify the effects on the cardiovascular system, and an investigative toxicology study in rats was performed to explore potential myocardial toxicities. Compound 2, in comparison to a reference A2a agonist, UK-432,097, demonstrated higher solubility, lower lipophilicity, lower plasma protein binding, high rat lung retention (28% remaining after 24 h), and was efficacious in a lung inflammatory rat model following intratracheal dosing. Despite these properties, compound 2 did not provide a sufficient therapeutic index, that is, separation of local anti-inflammatory efficacy in the lung from systemic side effects in the cardiovascular system. The plasma concentration that resulted in induction of hypotension (half maximal effective concentration; EC50 0.5 nmol/L) correlated to the in vitro A2a potency (rIC50 0.6 nmol/L). Histopathological lesions in the heart were observed at a dose level which is threefold above the efficacious dose level in the inflammatory rat lung model. In conclusion, compound 2 is a highly potent and selective A2a agonist with significant lung retention after intratracheal administration. Despite its local anti-inflammatory efficacy in rat lung, small margins to the cardiovascular effects suggested limited therapeutic value of this compound for treatment of inflammatory lung disease by the inhaled route.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa