Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 302(3): 676-683, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34931861

RESUMO

Background Concerns over the neurotoxic potential of retained gadolinium in brain tissues after intravenous gadolinium-based contrast agent (GBCA) administration have led to pronounced worldwide use changes, yet the clinical sequelae of gadolinium retention remain undefined. Purpose To assess clinical and neurologic effects and potential neurotoxicity of gadolinium retention in rats after administration of various GBCAs. Materials and Methods From March 2017 through July 2018, 183 male Wistar rats received 20 intravenous injections of 2.5 mmol per kilogram of body weight (80 human equivalent doses) of various GBCAs (gadodiamide, gadobenate, gadopentetate, gadoxetate, gadobutrol, gadoterate, and gadoteridol) or saline over 4 weeks. Rats were evaluated 6 and 34 weeks after injection with five behavioral tests, and inductively coupled plasma mass spectrometry, transmission electron microscopy, and histopathology were performed on urine, serum, cerebrospinal fluid (CSF), basal ganglia, dentate nucleus, and kidney samples. Dunnett post hoc test and Wilcoxon rank sum test were used to compare differences between treatment groups. Results No evidence of differences in any behavioral test was observed between GBCA-exposed rats and control animals at either 6 or 34 weeks (P = .08 to P = .99). Gadolinium concentrations in both neuroanatomic locations were higher in linear GBCA-exposed rats than macrocyclic GBCA-exposed rats at 6 and 34 weeks (P < .001). Gadolinium clearance over time varied among GBCAs, with gadobutrol having the largest clearance (median: 62% for basal ganglia, 70% for dentate) and gadodiamide having no substantial clearance. At 34 weeks, gadolinium was largely cleared from the CSF and serum of gadodiamide-, gadobenate-, gadoterate-, and gadobutrol-exposed rats, especially for the macrocyclic agents (range: 70%-98% removal for CSF, 34%-94% removal for serum), and was nearly completely removed from urine (range: 96%-99% removal). Transmission electron microscopy was used to detect gadolinium foci in linear GBCA-exposed brain tissue, but no histopathologic differences were observed for any GBCA. Conclusion In this rat model, no clinical evidence of neurotoxicity was observed after exposure to linear and macrocyclic gadolinium-based contrast agents at supradiagnostic doses. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Encéfalo/efeitos dos fármacos , Meios de Contraste/administração & dosagem , Gadolínio/administração & dosagem , Administração Intravenosa , Animais , Encéfalo/metabolismo , Meios de Contraste/metabolismo , Gadolínio/metabolismo , Masculino , Modelos Animais , Ratos , Ratos Wistar
2.
Addict Biol ; 25(5): e12801, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31267611

RESUMO

Disruptions in circadian rhythms are risk factors for excessive alcohol drinking. The ethanol-sensitive adenosine equilibrative nucleoside transporter type 1 (ENT1, slc29a1) regulates ethanol-related behaviors, sleep, and entrainment of circadian rhythms. However, the mechanism underlying the increased ethanol consumption in ENT1 knockout (KO) mice in constant light (LL) and whether there are sex differences in ethanol consumption in ENT1 mice are less studied. Here, we investigated the effects of loss of ENT1, LL, and sex on ethanol drinking using two-bottle choice. In addition, we monitored the locomotor activity rhythms. We found that LL increased ethanol drinking and reduced accumbal ENT1 expression and adenosine levels in male but not female mice, compared with control mice. Interestingly, only LL-exposed male, not female, ENT1 KO mice exhibited higher ethanol drinking and a longer circadian period with a higher amplitude compared with wild-type (WT) mice. Furthermore, viral-mediated rescue of ENT1 expression in the NAc of ENT1 KO mice reduced ethanol drinking, demonstrating a possible causal link between ENT1 expression and ethanol drinking in males. Together, our findings indicate that deficiency of ENT1 expression contributes to excessive ethanol drinking in a sex-dependent manner.


Assuntos
Transtornos Relacionados ao Uso de Álcool/complicações , Transtornos Relacionados ao Uso de Álcool/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/fisiologia , Transtornos do Sono do Ritmo Circadiano/complicações , Consumo de Bebidas Alcoólicas , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Etanol , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
3.
Addict Biol ; 25(3): e12754, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31012186

RESUMO

Waiting impulsivity is a risk factor for many psychiatric disorders including alcohol use disorder (AUD). Highly impulsive individuals are vulnerable to alcohol abuse. However, it is not well understood whether chronic alcohol use increases the propensity for impulsive behavior. Here, we establish a novel experimental paradigm demonstrating that continuous binge-like ethanol exposure progressively leads to maladaptive impulsive behavior. To test waiting impulsivity, we employed the 5-choice serial reaction time task (5-CSRTT) in C57BL/6J male mice. We assessed premature responses in the fixed and variable intertrial interval (ITI) 5-CSRTT sessions. We further characterized our ethanol-induced impulsive mice using Open Field, y-maze, two-bottle choice, and an action-outcome task. Our results indicate that continuous binge-like ethanol exposure significantly increased premature responses when mice were tested in variable ITI sessions even during a prolonged abstinent period. Ethanol-induced impulsive mice exhibited anxiety-like behavior during chronic exposures. This behavior was also observed in a separate cohort that was subjected to 20 days of abstinence. Ethanol-treated mice were less motivated for a sucrose reward compared with air-exposed control mice, while also demonstrating reduced responding during action-outcome testing. Overall, ethanol-treated mice demonstrated increased impulsive behavior, but a reduced motivation for a sucrose reward. Although waiting impulsivity has been hypothesized to be a trait or risk factor for AUD, our findings indicate that maladaptive impulse control can also be potentiated or induced by continuous chronic ethanol exposure in mice.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Consumo Excessivo de Bebidas Alcoólicas , Comportamento de Escolha/efeitos dos fármacos , Masculino , Camundongos , Motivação/efeitos dos fármacos , Teste de Campo Aberto , Tempo de Reação/efeitos dos fármacos , Recompensa
4.
Proteomics ; 18(7): e1700417, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29437267

RESUMO

Acamprosate is an FDA-approved medication for the treatment of alcoholism that is unfortunately only effective in certain patients. Although acamprosate is known to stabilize the hyper-glutamatergic state in alcoholism, pharmacological mechanisms of action in brain tissue remains unknown. To investigate the mechanism of acamprosate efficacy, the authors employ a pharmacoproteomics approach using an animal model of alcoholism, type 1 equilibrative nucleoside transporter (ENT1) null mice. The results demonstrate that acamprosate treatment significantly decreased both ethanol drinking and preference in ENT1 null mice compared to that of wild-type mice. Then, to elucidate acamprosate efficacy mechanism in ENT1 null mice, the authors utilize label-free quantification proteomics comparing both genotype and acamprosate treatment effects in the nucleus accumbens (NAc). A total of 1040 protein expression changes are identified in the NAc among 3634 total proteins detected. The proteomics and Western blot result demonstrate that acamprosate treatment decreased EAAT expression implicating stabilization of the hyper-glutamatergic condition in ENT1 null mice. Pathway analysis suggests that acamprosate treatment in ENT1 null mice seems to rescue glutamate toxicity through restoring of RTN4 and NF-κB medicated neuroimmune signaling compared to wild-type mice. Overall, pharmacoproteomics approaches suggest that neuroimmune restoration is a potential efficacy mechanism in the acamprosate treatment of certain sub-populations of alcohol dependent subjects.


Assuntos
Acamprosato/uso terapêutico , Dissuasores de Álcool/uso terapêutico , Alcoolismo/tratamento farmacológico , Modelos Animais de Doenças , Alcoolismo/genética , Alcoolismo/metabolismo , Animais , Transportador Equilibrativo 1 de Nucleosídeo/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo , Proteômica , Transdução de Sinais , Resultado do Tratamento
5.
Behav Brain Res ; 396: 112906, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950606

RESUMO

Glutamatergic dysregulation is known to contribute to obsessive-compulsive disorder (OCD). Astrocytic glutamate transporter 1 (GLT1) is responsible for the majority of glutamate clearance. However, the role of GLT1 in OCD-like behavior remains unclear. Here, we found that astrocytic GLT1 deficient mice showed increased wheel running activity but reduced home cage activity. Notably, they exhibited elevated grooming/rearing time and increased repetitive behavior counts in contextual and cued fear conditioning. In addition, they showed increased rearing counts in the metabolic chamber, and also augmented rearing time and jumping counts in the open field test. Taken together, our findings suggest that astrocytic GLT1 deficiency promotes OCD-like repetitive behaviors.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Transportador 2 de Aminoácido Excitatório/deficiência , Locomoção/fisiologia , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/fisiopatologia , Animais , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Medo/fisiologia , Asseio Animal/fisiologia , Camundongos , Camundongos Knockout
6.
Front Behav Neurosci ; 14: 57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390810

RESUMO

Glutamatergic dysregulation is known to contribute to altered emotional regulation. Astrocytic glutamate transporter 1 (GLT1) is responsible for the majority of glutamate clearance from synapse. However, the role of astrocytic GLT1 in affective processes such as anxiety- and depression-like behavior is not fully understood. Here, we found that astrocytic GLT1 deficient mice entered more frequently, and spent more time in the open arms of elevated plus maze without difference in overall distance traveled in the open field, nor were there any metabolic changes observed in the metabolic chamber compared to wildtype mice. Moreover, mice lacking astrocytic GLT1 exhibited less immobile time and moved greater area in the tail suspension test. Similarly, in the forced swim test, they showed less immobile time and moved greater area. In addition, we found that astrocytic GLT1 deficiency reduced freezing responses in the fear contextual and cued tests. Taken together, our findings suggest that astrocytic GLT1 deficiency decreases anxiety and depression-like behaviors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa