Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Cell Physiol ; 237(1): 507-522, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596240

RESUMO

Purinergic signaling is a necessary mechanism to trigger or even amplify cell communication. Its ligands, notably adenosine triphosphate (ATP) and adenosine, modulate specific membrane-bound receptors in virtually all human cells. Regardless of the stage of the pregnancy, cellular communication between maternal, placental, and fetal cells is the paramount mechanism to sustain its optimal status. In this review, we describe the crucial role of purinergic signaling on the regulation of the maternal-fetal trophic exchanges, immune control, and endocrine exchanges throughout pregnancy. The nature of the modulation of both ATP and adenosine on the embryo-maternal interface, going through placental invasion until birth delivery depends on the general maternal-fetal health state and consequently on the selective activation of their specific receptors. In addition, an increasing number of studies have been demonstrating the pivotal role of ATP and adenosine in modulating deleterious effects of suboptimal conditions of pregnancy. Here, we discuss the role of purinergic signaling on the balance that coordinates the embryo-maternal exchanges and a promising therapeutic venue in the context of pregnancy disorders.


Assuntos
Trifosfato de Adenosina , Placenta , Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Feminino , Feto , Humanos , Gravidez , Transdução de Sinais
2.
Med Res Rev ; 41(4): 2316-2349, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33645857

RESUMO

Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , 5'-Nucleotidase/metabolismo , Adenosina , Diferenciação Celular , Imunomodulação , Transdução de Sinais
3.
Exp Cell Res ; 382(1): 111456, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31194978

RESUMO

Autophagy is a cellular bulk degradation process used as an alternative source of energy and metabolites and implicated in various diseases. Inefficient autophagy in nutrient-deprived cancer cells would be beneficial for cancer therapy making its modulation valuable as a therapeutic strategy for cancer treatment, especially in combination with chemotherapy. Dipyridamole (DIP) is a vasodilator and antithrombotic drug. Its major effects involve the block of nucleoside uptake and phosphodiestesase inhibition, leading to increased levels of intracellular cAMP. Here we report that DIP increases autophagic markers due to autophagic flux blockage, resembling autophagosome maturation and/or closure impairment. Treatment with DIP results in an increased number of autophagosomes and autolysosomes and impairs degradation of SQSTM1/p62. As blockage of autophagic flux decreases the recycling of cellular components, DIP reduced the intracellular ATP levels in cancer cells. Autophagic flux blockage was neither through inhibition of lysosome function nor blockage of nucleoside uptake, but could be prevented by treatment with a PKA inhibitor, suggesting that autophagic flux failure mediated by DIP results from increased intracellular levels of cAMP. Treatment with DIP presented antiproliferative effects in vitro alone and in combination with chemotherapy drugs. Collectively, these data demonstrate that DIP can impair autophagic degradation, by preventing the normal autophagosome maturation, and might be useful in combination anticancer therapy.


Assuntos
Adenocarcinoma/patologia , Autofagia/efeitos dos fármacos , Dipiridamol/farmacologia , Neoplasias da Próstata/patologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/ultraestrutura , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Masculino , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteína Sequestossoma-1/biossíntese , Proteína Sequestossoma-1/genética , Ensaio Tumoral de Célula-Tronco
4.
J Neurosci Res ; 97(9): 1095-1109, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31119788

RESUMO

Parkinson's disease (PD) is a disabling and highly costly neurodegenerative condition with worldwide prevalence. Despite advances in treatments that slow progression and minimize locomotor impairments, its clinical management is still a challenge. Previous preclinical studies, using mesenchymal stem cell (MSC) transplantation and isolated physical exercise (EX), reported beneficial results for treatment of PD. Therefore, this experimental randomized study aimed to elucidate the therapeutic potential of combined therapy using adipose-derived human MSCs (ADSCs) grafted into the striatum in conjunction with aerobic treadmill training, specifically in terms of locomotor performance in a unilateral PD rat model induced by 6-hydroxydopamine (6-OHDA). Forty-one male Wistar rats were categorized into five groups in accordance with the type of treatment to which they were subjected (Sham, 6-OHDA - injury, 6-OHDA + exercise, 6-OHDA + cells, and 6-OHDA + combined). Subsequently, dopaminergic depletion was assessed by the methylphenidate challenge and the specified therapeutic intervention was conducted in each group. The foot fault task was performed at the end of the experiment to serve as an assessment of motor skills. The results showed that despite disturbances in motor balance and coordination, locomotor dysfunction was ameliorated in all treatment categories in comparison to the injury group (sign test, p < 0.001, effect size: 0.71). The exercise alone and combined groups were the categories that exhibited the best recovery in terms of movement performance (p < 0.001). Overall, this study confirms that exercise is a powerful option to improve motor function and a promising adjuvant intervention for stem cell transplantation in the treatment of PD motor symptoms. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible at https://figshare.com/s/18a543c101a17a1d5560. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.


Assuntos
Transplante de Células-Tronco Mesenquimais , Doença de Parkinson Secundária/terapia , Condicionamento Físico Animal , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Metilfenidato , Atividade Motora/efeitos dos fármacos , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Ratos , Ratos Wistar , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
5.
Cell Biol Int ; 42(2): 139-152, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28949053

RESUMO

Cervical cancer is the fourth most common cancer affecting women worldwide. Among many factors, the presence of cancer stem cells, a subpopulation of cells inside the tumor, has been associated with a worse prognosis. Considering the importance of gene expression studies to understand the biology of cervical cancer stem cells (CCSC), this work identifies stable reference genes for cervical cancer cell lines SiHa, HeLa, and ME180 as well as their respective cancer stem-like cells. A literature review was performed to identify validated reference genes currently used to normalize RT-qPCR data in cervical cancer cell lines. Then, cell lines were cultured in regular monolayer or in a condition that favors tumor sphere formation. RT-qPCR was performed using five reference genes: ACTB, B2M, GAPDH, HPRT1, and TBP. Stability was assessed to validate the selected genes as suitable reference genes. The evaluation validated B2M, GAPDH, HPRT1, and TBP in these experimental conditions. Among them, GAPDH and TBP presented the lowest variability according to the analysis by Normfinder, Bestkeeper, and ΔCq methods, being therefore the most adequate genes to normalize the combination of all samples. These results suggest that B2M, GAPDH, HPRT1, and TBP are suitable reference genes to normalize RT-qPCR data of established cervical cancer cell lines SiHa, HeLa, and ME180 as well as their derived cancer stem-like cells. Indeed, GAPDH and TBP seem to be the most convenient choices for studying gene expression in these cells in monolayers or spheres.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Células-Tronco Neoplásicas/patologia , Padrões de Referência , Esferoides Celulares , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
6.
Med Res Rev ; 37(2): 271-313, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27617697

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer due to its highly invasive nature that impedes the surgical removal of all tumor cells, making relapse inevitable. However, the mechanisms used by glioma cells to invade the surrounding tissue are still unclear. In this context, epithelial-to-mesenchymal transition (EMT) has emerged as a key regulator of this invasive state and although the real relevance of this program in malignant glioma is still controversial, it has been strongly associated with GBM malignancy. EMT is a very complex process regulated by several families of transcriptional factors through many signaling pathways that form a network that allows cancer cells to acquire invasive properties and penetrate the neighboring stroma, resulting in the formation of an advantageous microenvironment for cancer progression and metastasis. In this systematic review, we focus on the molecular mechanisms of EMT including EMT-factors, drug resistance, miRNA, and new therapeutic strategies. In addition, we address controversial questions about mesenchymal shift in GBMs with a bioinformatics analysis to show that in terms of epithelial and mesenchymal phenotype, the majority of GBMs samples analyzed have a profile more mesenchymal than epithelial. If induced, this phenotype can be shifted toward an even more mesenchymal phenotype in an EMT-like process in glioma cells. A better understanding of the molecular regulation of the EMT during tumor spreading will help to provide potential therapeutic interventions to target this program when treating GBM.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Animais , Neoplasias Encefálicas/metabolismo , Simulação por Computador , Transição Epitelial-Mesenquimal , Glioblastoma/metabolismo , Humanos
7.
J Cell Biochem ; 118(8): 2430-2442, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120532

RESUMO

Human Limbal (L-MSCs) and Dermal Mesenchymal Stem Cell (D-MSCs) possess many properties that increase their therapeutic potential in ophthalmology and dermatology. It is known that purinergic signaling plays a role in many aspects of mesenchymal stem cells physiology. They release and respond to purinergic ligands, altering proliferation, migration, differentiation, and apoptosis. Therefore, more information on these processes would be crucial for establishing future clinical applications using their differentiation potential, but without undesirable side effects. This study evaluated and compared the expression of ecto-nucleotidases, the enzymatic activity of degradation of extracellular nucleotides and the metabolism of extracellular ATP in D-MSCs and L-MSCs, isolated from discard tissues of human skin and sclerocorneal rims. The D-MSCs and L-MSCs showed a differentiation potential into osteogenic, adipogenic, and chondrogenic lineages and the expression of markers CD105+ , CD44+ , CD14- , CD34- , CD45- , as expected. Both cells hydrolyzed low levels of extracellular ATP and high levels of AMP, leading to adenosine accumulation that can regulate inflammation and tissue repair. These cells expressed mRNA for ENTPD1, 2, 3, 5 and 6, and CD73 that corresponded to the observed enzymatic activities. Thus, considering the degradation of ATP and adenosine production, limbal MSCs are very similar to dermal MSCs, indicating that from the aspect of extracellular nucleotide metabolism L-MSCs are very similar to the characterized D-MSCs. J. Cell. Biochem. 118: 2430-2442, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nucleotídeos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adipogenia/genética , Adipogenia/fisiologia , Antígenos CD34/genética , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Condrogênese/genética , Condrogênese/fisiologia , Endoglina/genética , Endoglina/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hidrólise , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Limbo da Córnea/citologia , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Osteogênese/genética , Osteogênese/fisiologia , Pirofosfatases/genética , Pirofosfatases/metabolismo , Pele/citologia
8.
Mol Pharmacol ; 90(3): 371-84, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27436127

RESUMO

Autophagy is a catabolic process that is largely regulated by extracellular and intracellular signaling pathways that are central to cellular metabolism and growth. Mounting evidence has shown that ion channels and transporters are important for basal autophagy functioning and influence autophagy to handle stressful situations. Besides its role in cell proliferation and apoptosis, intracellular Ca(2+) is widely recognized as a key regulator of autophagy, acting through the modulation of pathways such as the mechanistic target of rapamycin complex 1, calcium/calmodulin-dependent protein kinase kinase 2, and protein kinase C. Proper spatiotemporal Ca(2+) availability, coupled with a controlled ionic flow among the extracellular milieu, storage compartments, and the cytosol, is critical in determining the role played by Ca(2+) on autophagy and on cell fate. The crosstalk between Ca(2+) and autophagy has a central role in cellular homeostasis and survival during several physiologic and pathologic conditions. Here we review the main findings concerning the mechanisms and roles of Ca(2+)-modulated autophagy, focusing on human disorders ranging from cancer to neurologic diseases and immunity. By identifying mechanisms, players, and pathways that either induce or suppress autophagy, new promising approaches for preventing and treating human disorders emerge, including those based on the modulation of Ca(2+)-mediated autophagy.


Assuntos
Autofagia , Sinalização do Cálcio , Doença , Cálcio/metabolismo , Sistema Nervoso Central/metabolismo , Humanos , Modelos Biológicos
9.
J Cell Biochem ; 115(10): 1673-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24802095

RESUMO

Mesenchymal stem cells (MSCs) have shown a great potential for cell-based therapy and many different therapeutic purposes. Despite the recent advances in the knowledge of MSCs biology, their biochemical and molecular properties are still poorly defined. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'-nucleotidase (eNT/CD73) are widely expressed enzymes that hydrolyze extracellular nucleotides, generating an important cellular signaling cascade. Currently, studies have evidenced the relationship between the purinergic system and the development, maintenance, and differentiation of stem cells. The objective of this study is to identify the NTPDases and eNT/CD73 and compare the levels of nucleotide hydrolysis on MSCs isolated from different murine tissues (bone marrow, lung, vena cava, kidney, pancreas, spleen, skin, and adipose tissue). MSCs from all tissues investigated expressed the ectoenzymes at different levels. In MSCs from pancreas and adipose tissue, the hydrolysis of triphosphonucleosides was significantly higher when compared to the other cells. The diphosphonucleosides were hydrolyzed at a higher rate by MSC from pancreas when compared to MSC from other tissues. The differential nucleotide hydrolysis activity and enzyme expression in these cells suggests that MSCs play different roles in regulating the purinergic system in these tissues. Overall MSCs are an attractive adult-derived cell population for therapies, however, the fact that ecto-nucleotide metabolism can affect the microenvironment, modulating important events, such as immune response, makes the assessment of this metabolism an important part of the characterization of MSCs to be applied therapeutically.


Assuntos
5'-Nucleotidase/metabolismo , Células-Tronco Mesenquimais/enzimologia , Células-Tronco Mesenquimais/metabolismo , Nucleotídeos/metabolismo , Pirofosfatases/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais
10.
Biochem Cell Biol ; 92(2): 95-104, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24697693

RESUMO

Cervical cancer is the third most frequent cancer in women worldwide. Adenine nucleotide signaling is modulated by the ectonucleotidases that act in sequence, forming an enzymatic cascade. Considering the relationship between the purinergic signaling and cancer, we studied the E-NTPDases, ecto-5'-nucleotidase, and E-NPPs in human cervical cancer cell lines and keratinocytes. We evaluated the expression profiles of these enzymes using RT-PCR and quantitative real-time PCR analysis. The activities of these enzymes were examined using ATP, ADP, AMP, and p-nitrophenyl-5'-thymidine monophosphate (p-Nph-5'-TMP) as substrate, in a colorimetric assay. The extracellular adenine nucleotide hydrolysis was estimated by HPLC analysis. The hydrolysis of all substrates exhibited a linear pattern and these activities were cation-dependent. An interesting difference in the degradation rate was observed between cervical cancer cell lines SiHa, HeLa, and C33A and normal imortalized keratinocytes, HaCaT cells. The mRNA of ecto-5'-nucleotidase, E-NTPDases 5 and 6 were detectable in all cell lines, and the dominant gene expressed was the Entpd 5 enzyme, in SiHa cell line (HPV16 positive). In accordance with this result, a higher hydrolysis activity for UDP and GDP nucleotides was observed in the supernatant of the SiHa cells. Both normal and cancer cells presented activity and mRNAs of members of the NPP family. Considering that these enzymes exert an important catalytic activity, controlling purinergic nucleotide concentrations in tumors, the presence of ectonucleotidases in cervical cancer cells can be important to regulate the levels of extracellular adenine nucleotides, limiting their effects.


Assuntos
5'-Nucleotidase/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Neoplasias do Colo do Útero/metabolismo , 5'-Nucleotidase/genética , Nucleotídeos de Adenina/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Feminino , Expressão Gênica , Humanos , Hidrólise , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , RNA Mensageiro/metabolismo , Neoplasias do Colo do Útero/genética
11.
Front Immunol ; 14: 1183465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292196

RESUMO

Introduction: The tumor microenvironment (TME) of glioblastoma (GB) is characterized by an increased infiltration of immunosuppressive cells that attenuate the antitumor immune response. The participation of neutrophils in tumor progression is still controversial and a dual role in the TME has been proposed. In this study, we show that neutrophils are reprogrammed by the tumor to ultimately promote GB progression. Methods: Using in vitro and in vivo assays, we demonstrate the existence of bidirectional GB and neutrophil communication, directly promoting an immunosuppressive TME. Results and discussion: Neutrophils have shown to play an important role in tumor malignancy especially in advanced 3D tumor model and Balb/c nude mice experiments, implying a time- and neutrophil concentration-dependent modulation. Studying the tumor energetic metabolism indicated a mitochondria mismatch shaping the TME secretome. The given data suggests a cytokine milieu in patients with GB that favors the recruitment of neutrophils, sustaining an anti-inflammatory profile which is associated with poor prognosis. Besides, glioma-neutrophil crosstalk has sustained a tumor prolonged activation via NETs formation, indicating the role of NFκB signaling in tumor progression. Moreover, clinical samples have indicated that neutrophil-lymphocyte ratio (NLR), IL-1ß, and IL-10 are associated with poor outcomes in patients with GB. Conclusion: These results are relevant for understanding how tumor progression occurs and how immune cells can help in this process.


Assuntos
Glioblastoma , Neutrófilos , Animais , Camundongos , Camundongos Nus , Transdução de Sinais , Imunidade , Microambiente Tumoral
12.
Purinergic Signal ; 8(2): 235-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22038661

RESUMO

Gliomas are the most common and devastating type of primary brain tumor. Many non-neoplastic cells, including immune cells, comprise the tumor microenvironment where they create a milieu that appears to dictate cancer development. ATP and the phosphohydrolytic products ADP and adenosine by activating P2 and P1 receptors may participate in these interactions among malignant and immune cells. Purinergic receptor-mediated cell communication is closely regulated by ectonucleotidases, such as by members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, which hydrolyze extracellular nucleotides. We have shown that gliomas, unlike astrocytes, exhibit low NTPDase activity. Furthermore, ATP induces glioma cell proliferation and the co-administration of apyrase decreases progression of injected cells in vivo. We have previously shown that NTPDase2 reconstitution dramatically increases tumor growth in vivo. Here we evaluated whether NTPDase2 reconstitution to gliomas modulates systemic inflammatory responses. We observed that NTPDase2 overexpression modulated pro-inflammatory cytokine production and platelet reactivity. Additionally, pathological alterations in the lungs were observed in rats bearing these tumors. Our results suggest that disruption of purinergic signaling via ADP accumulation creates an inflammatory state that may promote tumor spread and dictate clinical progression.


Assuntos
Adenosina Trifosfatases/biossíntese , Neoplasias Encefálicas/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glioma/enzimologia , Mediadores da Inflamação/fisiologia , Lesão Pulmonar/enzimologia , Adenosina Trifosfatases/genética , Animais , Apirase/biossíntese , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/patologia , Inflamação/enzimologia , Inflamação/patologia , Lesão Pulmonar/patologia , Masculino , Ratos , Ratos Wistar
13.
J Mol Med (Berl) ; 100(4): 569-584, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091759

RESUMO

For over a year, the coronavirus disease 2019 has been affecting the world population by causing severe tissue injuries and death in infected people. Adenosine triphosphate (ATP) and the nicotinamide adenine dinucleotide (NAD +) are two molecules that are released into the extracellular microenvironment after direct virus infection or cell death caused by hyper inflammation and coagulopathy. Also, these molecules are well known to participate in multiple pathways and have a pivotal role in the purinergic signaling pathway. Thus, using public datasets available on the Gene Expression Omnibus (GEO), we analyzed raw proteomics data acquired using mass spectrometry (the gold standard method) and raw genomics data from COVID-19 patient samples obtained by microarray. The data was analyzed using bioinformatics and statistical methods according to our objectives. Here, we compared the purinergic profile of the total leukocyte population and evaluated the levels of these soluble biomolecules in the blood, and their correlation with coagulation components in COVID-19 patients, in comparison to healthy people or non-COVID-19 patients. The blood metabolite analysis showed a stage-dependent inosine increase in COVID-19 patients, while the nucleotides ATP and ADP had positive correlations with fibrinogen and other coagulation proteins. Also, ATP, ADP, inosine, and hypoxanthine had positive and negative correlations with clinical features. Regarding leukocyte gene expression, COVID-19 patients showed an upregulation of the P2RX1, P2RX4, P2RX5, P2RX7, P2RY1, P2RY12, PANX1, ADORA2B, NLPR3, and F3 genes. Yet, the ectoenzymes of the canonical and non-canonical adenosinergic pathway (ENTPD1 and CD38) are upregulated, suggesting that adenosine is produced by both active adenosinergic pathways. Hence, approaches targeting these biomolecules or their specific purinoreceptors and ectoenzymes may attenuate the high inflammatory state and the coagulopathy seen in COVID-19 patients. KEY MESSAGES : Adenosinergic pathways are modulated on leukocytes from COVID-19 patients. Plasmatic inosine levels are increased in COVID-19 patients. ATP, ADP, AMP, hypoxanthine, and inosine are correlated with coagulation players. The nucleotides and nucleosides are correlated with patients' clinical features. The P2 receptors and ectoenzymes are correlated with Tissue factor in COVID-19.


Assuntos
COVID-19 , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Conexinas , Humanos , Leucócitos/metabolismo , Proteínas do Tecido Nervoso , Transdução de Sinais
14.
Cell Tissue Res ; 344(2): 279-86, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21424267

RESUMO

Ecto-5'-nucleotidase (eNT/CD73, E.C.3.1.3.5) is a glycosyl phosphatidylinositol (GPI)-linked cell-surface protein with several functions, including the local generation of adenosine from AMP, with the consequent activation of adenosine receptors and the salvaging of extracellular nucleotides. It also apparently functions independently of this activity, e.g., in the mediation of cell-cell adhesion. Liver fibrosis can be considered as a dynamic and integrated cellular response to chronic liver injury and the activation of hepatic stellate cells (HSCs) plays a role in the fibrogenic process. eNT/CD73 and adenosine are reported to play an important role in hepatic fibrosis in murine models. Knockdown of eNT/CD73 leads to an increase in mRNA expression of tissue non-specific alkaline phosphatase (TNALP), another AMP-degrading enzyme and thus no alteration is seen in the total ecto-AMPase activity of the cell. eNT/CD73 knockdown also leads to changes in the expression of collagen I and a clear alteration of cell migration. We suggest that eNT/CD73 protein expression controls cell migration and collagen expression in a mechanism independent of changes in nucleotide metabolism.


Assuntos
5'-Nucleotidase/deficiência , Movimento Celular/fisiologia , Colágeno Tipo I/genética , Células Estreladas do Fígado/citologia , RNA Mensageiro/metabolismo , 5'-Nucleotidase/biossíntese , 5'-Nucleotidase/genética , 5'-Nucleotidase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colágeno Tipo I/metabolismo , Técnicas de Silenciamento de Genes , Células Estreladas do Fígado/enzimologia , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/enzimologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção
15.
J Cell Biochem ; 109(5): 983-91, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20069573

RESUMO

Gliomas have one of the worst prognosis among cancers. Their resistance to cell death induced by endogenous neurotoxic agents, such as extracellular ATP, seems to play an important role in their pathobiology since alterations in the degradation rate of extracellular ATP drastically affects glioma growth in rats. In the present work we characterized the mechanisms of cell death induced by extracellular ATP in a murine glioma cell line, GL261. ATP and BzATP, a P2X7 agonist, induced cell death at concentrations that are described to activate the P2X7 receptor in mouse. oATP, an antagonist of P2X7, blocked the ATP-induced cell death. Agonists of purinergic receptors expressed in GL261 such as adenosine, ADP, UTP did not cause any cell death, even at mM concentrations. A sub-population of cells more sensitive to ATP expressed more P2X7 when compared to a less sensitive subpopulation. Accordingly, RNA interference of the P2X7 receptor drastically reduced ATP-induced cell death, suggesting that this receptor is necessary for this effect. The mechanism of ATP-induced cell death is predominantly necrotic, since cells presented shrinkage accompanied by membrane permeabilization, but not apoptotic, since no phosphatidylserine externalization or caspase activity was observed. These data show the importance of P2X7 in ATP-induced cell death and shed light on the importance of ATP-induced cell death in glioma development.


Assuntos
Trifosfato de Adenosina/farmacologia , Glioma/patologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Glioma/genética , Camundongos , Necrose/patologia , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X7
16.
Mol Cell Biochem ; 339(1-2): 79-87, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20058055

RESUMO

Hepatic stellate cells (HSC) play a critical role in the development and maintenance of liver fibrosis. HSC are lipocytes that displayed the capacity to develop into myofibroblast-like cells. Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) regulate the concentration of extracellular nucleotides, signaling molecules that play a role in the pathogenesis of hepatic fibrosis. In the present study, we identified and compared the expressions of E-NTPDase family members in two different phenotypes of the mouse hepatic stellate cell line (GRX) and evaluated the nucleotide hydrolysis by these cells. We show that both phenotypes of GRX cell line expressed NTPDase 3 and 5. However, only activated cells expressed NTPDase 6. In quiescent-like cells, the hydrolysis of triphosphonucleosides was significantly higher, and was related to an increase in Entpd3 mRNA expression. The diphosphonucleosides were hydrolyzed at a similar rate by two phenotypes of GRX cells. We suggest that up-regulation of Entpd3 mRNA expression modulates the extracellular concentration of nucleotides/nucleosides and affect P2-receptor signaling differently in quiescent-like cells and may play a role in the regulation of HSC functions.


Assuntos
Adipócitos/enzimologia , Diferenciação Celular , Fígado/enzimologia , Mioblastos/enzimologia , Nucleotídeos/metabolismo , Pirofosfatases/metabolismo , Adipócitos/citologia , Animais , Western Blotting , Fibroblastos/enzimologia , Hidrólise , Fígado/citologia , Camundongos , Mioblastos/citologia , Pirofosfatases/classificação , Pirofosfatases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Int J Biol Macromol ; 160: 750-757, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479938

RESUMO

A film of chitosan, gelatin and liposome has been designed for dermatological applications. Several adaptations were required throughout development to facilitate in vitro analysis, physicochemical characterization and biocompatibility evaluation. The final version of the film was characterized by differential scanning calorimetry, evaluation of swelling and scanning electron microscopy. The biocompatibility of the film was assessed by investigating cellular parameters of three types of human cells by direct contact or through films extracts: I) primary culture of adipose-derived mesenchymal stromal cells (ADCSs) and melanoma cell lines were used to test cell adhesion and morphology by direct cell culture on the material; II) ADSCs and immortalized keratinocytes were used in cell viability assay using different films extracts. The film showed physicochemical characteristics that favored cellular input, being suitable for in vitro analysis, which allowed its biocompatible characteristics such as the absence of toxicity to be verified without causing significant morphological changes in ADSCs and melanoma cell line. Altogether, these results suggest that the material has a potential application for drug delivery and promotion of skin tissue repair and is therefore worthwhile for further investigations using preclinical models to cover dermal lesions.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Gelatina/química , Lipossomos/química , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Humanos , Imunofenotipagem , Melanoma/metabolismo , Células-Tronco Mesenquimais/citologia
18.
Pigment Cell Melanoma Res ; 33(3): 507-514, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31758842

RESUMO

MEK inhibitors (MEKi) demonstrate anti-proliferative activity in patients with metastatic uveal melanoma, but responses are short-lived. In the present study, we evaluated the MEKi trametinib alone and in combination with drugs targeting epigenetic regulators, including DOT1L, EZH2, LSD1, DNA methyltransferases, and histone acetyltransferases. The DNA methyltransferase inhibitor (DNMTi) decitabine effectively enhanced the anti-proliferative activity of trametinib in cell viability, colony formation, and 3D organoid assays. RNA-Seq analysis showed the MEKi-DNMTi combination primarily affected the expression of genes involved in G1 and G2/2M checkpoints, cell survival, chromosome segregation and mitotic spindle. The DNMTi-MEKi combination did not appear to induce a DNA damage response (as measured by γH2AX foci) or senescence (as measured by ß-galactosidase staining) compared to either MEKi or DNMTi alone. Instead, the combination increased expression of the CDK inhibitor p21 and the pro-apoptotic protein BIM. In vivo, the DNMTi-MEKi combination was more effective at suppressing growth of MP41 uveal melanoma xenografts than either drug alone. Our studies indicate that DNMTi may enhance the activity of MEKi in uveal melanoma.


Assuntos
Decitabina/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/enzimologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Decitabina/farmacologia , Feminino , Humanos , Melanoma/patologia , Camundongos , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Neoplasias Uveais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Sci ; 100(8): 1434-42, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19558578

RESUMO

The ectonucleoside triphosphate diphosphohydrolases (E-NTPDases) are a family of ectoenzymes that hydrolyze extracellular nucleotides, thereby modulating purinergic signaling. Gliomas have low expression of all E-NTPDases, particularly NTPDase2, when compared to astrocytes in culture. Nucleotides induce glioma proliferation and ATP, although potentially neurotoxic, does not evoke cytotoxic action on the majority of glioma cultures. We have previously shown that the co-injection of apyrase with gliomas decreases glioma progression. Here, we tested whether selective re-establishment of NTPDase2 expression would affect glioma growth. NTPDase2 overexpression in C6 glioma cells had no effect on in vitro proliferation but dramatically increased tumor growth and malignant characteristics in vivo. Additionally, a sizable platelet sequestration in the tumor area and an increase in CD31 or platelet/endothelial cell adhesion molecule-1 (PECAM-1), vascular endothelial growth factor and OX-42 immunostaining were observed in C6-Enhanced Yellow Fluorescent Protein (EYFP)/NTPDase2-derived gliomas when compared to controls. Treatment with clopidogrel, a P2Y(12) antagonist with anti-platelet properties, decreased these parameters to control levels. These data suggest that the ADP derived from NTPDase2 activity stimulates platelet migration to the tumor area and that NTPDase2, by regulating angiogenesis and inflammation, seems to play an important role in tumor progression. In conclusion, our results point to the involvement of purinergic signaling in glioma progression.


Assuntos
Adenosina Trifosfatases/metabolismo , Apirase/metabolismo , Glioma/metabolismo , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/genética , Animais , Apirase/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Corantes/metabolismo , Corantes Fluorescentes/metabolismo , Glioma/genética , Glioma/patologia , Imuno-Histoquímica , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Sensibilidade e Especificidade , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Mol Cell Biochem ; 325(1-2): 179-85, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19194664

RESUMO

Nucleotides and nucleosides represent an important and ubiquitous class of molecules that interact with specific receptors, regulate a variety of activities within the liver, and play a role in the pathogenesis of hepatic fibrosis. Ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs) are ecto-enzymes that are located on the cell surface. NPP1, NPP2, and NPP3 (abbreviated as NPP1-3 hereafter) have been implicated in the hydrolysis of nucleotides; together with other ecto-nucleotidases, they control the events induced by extracellular nucleotides. We have identified and compared the expression of E-NPP family members in two different phenotypes of the mouse hepatic stellate cell line (GRX). In quiescent-like hepatic stellate cells (HSCs), E-NPP activity was significantly higher, NPP2 mRNA expression decreased and NPP3 mRNA increased. The differential NPP activity and expression in two phenotypes of GRX cells suggests that they are involved in the regulation of extracellular nucleotide metabolism in HSCs. However, the role of E-NPPs in the liver remains to be clarified.


Assuntos
Fígado/enzimologia , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Primers do DNA , DNA Complementar , Hidrólise , Fígado/citologia , Camundongos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa