Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(8): e26747, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825981

RESUMO

Electroencephalography (EEG) functional connectivity (FC) estimates are confounded by the volume conduction problem. This effect can be greatly reduced by applying FC measures insensitive to instantaneous, zero-lag dependencies (corrected measures). However, numerous studies showed that FC measures sensitive to volume conduction (uncorrected measures) exhibit higher reliability and higher subject-level identifiability. We tested how source reconstruction contributed to the reliability difference of EEG FC measures on a large (n = 201) resting-state data set testing eight FC measures (including corrected and uncorrected measures). We showed that the high reliability of uncorrected FC measures in resting state partly stems from source reconstruction: idiosyncratic noise patterns define a baseline resting-state functional network that explains a significant portion of the reliability of uncorrected FC measures. This effect remained valid for template head model-based, as well as individual head model-based source reconstruction. Based on our findings we made suggestions how to best use spatial leakage corrected and uncorrected FC measures depending on the main goals of the study.


Assuntos
Conectoma , Eletroencefalografia , Rede Nervosa , Humanos , Eletroencefalografia/métodos , Eletroencefalografia/normas , Adulto , Conectoma/normas , Conectoma/métodos , Feminino , Masculino , Reprodutibilidade dos Testes , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adulto Jovem , Imageamento por Ressonância Magnética/normas , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
3.
Front Hum Neurosci ; 18: 1386207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938291

RESUMO

During the first year of life, infants start to learn the lexicon of their native language. Word learning includes the establishment of longer-term representations for the phonological form and the meaning of the word in the brain, as well as the link between them. However, it is not known how the brain processes word forms immediately after they have been learned. We familiarized 12-month-old infants (N = 52) with two pseudowords and studied their neural signatures. Specifically, we determined whether a newly learned word form elicits neural signatures similar to those observed when a known word is recognized (i.e., when a well-established word representation is activated, eliciting enhanced mismatch responses) or whether the processing of a newly learned word form shows the suppression of the neural response along with the principles of predictive coding of a learned rule (i.e., the order of the syllables of the new word form). The pattern of results obtained in the current study suggests that recognized word forms elicit a mismatch response of negative polarity, similar to newly learned and previously known words with an established representation in long-term memory. In contrast, prediction errors caused by acoustic novelty or deviation from the expected order in a sequence of (pseudo)words elicit responses of positive polarity. This suggests that electric brain activity is not fully explained by the predictive coding framework.

4.
Cortex ; 172: 114-124, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295554

RESUMO

Event-related potentials (ERPs) acquired during task-free passive listening can be used to study how sensitivity to common pattern repetitions and rare deviations changes over time. These changes are purported to represent the formation and accumulation of precision in internal models that anticipate future states based on probabilistic and/or statistical learning. This study features an unexpected finding; a strong order-dependence in the speed with which deviant responses are elicited that anchors to first learning. Participants heard four repetitions of a sequence in which an equal number of short (30 msec) and long (60 msec) pure tones were arranged into four blocks in which one was common (the standard, p = .875) and the other rare (the deviant, p = .125) with probabilities alternating across blocks. Some participants always heard the sequences commencing with the 30 msec deviant block, and others always with the 60 msec deviant block first. A deviance-detection component known as mismatch negativity (MMN) was extracted from responses and the point in time at which MMN reached maximum amplitude was used as the dependent variable. The results show that if participants heard sequences commencing with the 60 msec deviant block first, the MMN to the 60 msec and 30 msec deviant peaked at an equivalent latency. However, if participants heard sequences commencing with the 30 msec deviant first, the MMN peaked earlier to the 60 msec deviant. Furthermore, while the 30 msec MMN latency did not differ as a function of sequence composition, the 60 msec MMN latency did and was earlier when the sequences began with a 30 msec deviant first. By examining MMN latency effects as a function of age and hearing level it was apparent that the differentiation in 30 msec and 60 msec MMN latency expands with older age and raised hearing threshold due to prolongation of the time taken for the 30 msec MMN to peak. The observations are discussed with reference to how the initial sound composition may tune the auditory system to be more sensitive to different cues (i.e., offset responses vs perceived loudness). The order-effect demonstrates a remarkably powerful anchoring to first learning that might reflect initial tuning to the most valuable discriminating feature within a given listening environment, an effect that defies explanation based on statistical information alone.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Eletroencefalografia/métodos , Tempo de Reação/fisiologia , Potenciais Evocados/fisiologia
5.
iScience ; 27(4): 109295, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558934

RESUMO

The study investigates age-related decline in listening abilities, particularly in noisy environments, where the challenge lies in extracting meaningful information from variable sensory input (figure-ground segregation). The research focuses on peripheral and central factors contributing to this decline using a tone-cloud-based figure detection task. Results based on behavioral measures and event-related brain potentials (ERPs) indicate that, despite delayed perceptual processes and some deterioration in attention and executive functions with aging, the ability to detect sound sources in noise remains relatively intact. However, even mild hearing impairment significantly hampers the segregation of individual sound sources within a complex auditory scene. The severity of the hearing deficit correlates with an increased susceptibility to masking noise. The study underscores the impact of hearing impairment on auditory scene analysis and highlights the need for personalized interventions based on individual abilities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa