Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Addict ; 24(8): 748-55, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26584468

RESUMO

BACKGROUND AND OBJECTIVES: We previously reported that an anti-methamphetamine (MA) vaccine attenuated drug-conditioned effects in mice, but it used a carrier protein and adjuvant not available for clinical use. Here we produced a vaccine with the same hapten (succinyl-methamphetamine, SMA) but attached to tetanus toxoid (SMA-TT) and adsorbed to aluminum hydroxide, components approved for use in humans. We then assessed the vaccine's ability to generate anti-MA antibodies, alter acquisition and reinstatement of MA place conditioning, and prevent MA brain penetration. METHODS: Mice were administered SMA-TT at weeks 0 and 3 and non-vaccinated mice received saline. Anti-MA antibody concentrations were determined at 8 and 12 weeks. Place conditioning began during week 9 in which vaccinated and non-vaccinated mice were divided into groups and conditioned with .5, or 2.0 mg/kg MA. Following acquisition training, mice were extinguished and then a reinstatement test was performed in which mice were administered their original training dose of MA. Separate groups of non-vaccinated and vaccinated mice were administered .5 and 2.0 mg/kg MA and brain MA levels determined. RESULTS AND CONCLUSIONS: Anti-MA antibody levels were elevated at week 8 and remained so through week 12. The SMA-TT vaccine attenuated acquisition and reinstatement of MA place conditioning. Significantly greater proportions of vaccinated mice during acquisition and reinstatement tests showed conditioned place aversion. Moreover, MA brain levels were decreased in vaccinated mice following administration of both doses of MA. SCIENTIFIC SIGNIFICANCE: Results support further development of anti-MA vaccines using components approved for use in humans.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/prevenção & controle , Condicionamento Psicológico/efeitos dos fármacos , Metanfetamina/imunologia , Metanfetamina/farmacologia , Toxoide Tetânico/imunologia , Vacinação , Adjuvantes Imunológicos , Hidróxido de Alumínio/administração & dosagem , Animais , Anticorpos/sangue , Aprendizagem da Esquiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Metanfetamina/administração & dosagem , Metanfetamina/farmacocinética , Camundongos , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/farmacologia
2.
J Neuroimmune Pharmacol ; 15(2): 292-308, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31897976

RESUMO

Cellular arachidonic acid (AA), an unsaturated fatty acid found ubiquitously in plasma membranes, is metabolized to different prostanoids, such as prostacyclin (PGI2) and prostaglandin E2 (PGE2), by the three-step reactions coupling the upstream cyclooxygenase (COX) isoforms (COX-1 and COX-2) with the corresponding individual downstream synthases. While the vascular actions of these prostanoids are well-characterized, their specific roles in the hippocampus, a major brain area for memory, are poorly understood. The major obstacle for its understanding in the brain was to mimic the biosynthesis of each prostanoid. To solve the problem, we utilized Single-Chain Hybrid Enzyme Complexes (SCHECs), which could successfully control cellular AA metabolites to the desired PGI2 or PGE2. Our in vitro studies suggested that neurons with higher PGI2 content and lower PGE2 content exhibited survival protection and resistance to Amyloid-ß-induced neurotoxicity. Further extending to an in vivo model, the hybrid of PGI2-producing transgenic mice and Alzheimer's disease (AD) mice showed restored long-term memory. These findings suggested that the vascular prostanoids, PGI2 and PGE2, exerted significant regulatory influences on neuronal protection (by PGI2), or damage (by PGE2) in the hippocampus, and raised a concern that the wide uses of aspirin in cardiovascular diseases may exert negative impacts on neurodegenerative protection. Graphic Abstract Our study intended to understand the crosstalk of prostanoids in the hippocampus, a major brain area impacted in AD, by using hybrid enzymes to redirect the synthesis of prostanoids to PGE2 and PGI2, respectively. Our data indicated that during inflammation, the vascular mediators, PGI2 and PGE2, exerted significant regulatory influences on neuronal protection (by PGI2), or damage (by PGE2) in the hippocampus. These findings also raised a concern that the widely uses of non-steroidal anti-inflammatory drugs in cardiovascular diseases may exert negative impacts on neurodegenerative protection.


Assuntos
Epoprostenol/biossíntese , Hipocampo/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Regulação para Cima/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Epoprostenol/genética , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Iloprosta/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa