Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 38(9): 2633-2635, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35199148

RESUMO

MOTIVATION: The wealth of protein structures collected in the Protein Data Bank enabled large-scale studies of their function and evolution. Such studies, however, require the generation of customized datasets combining the structural data with miscellaneous accessory resources providing functional, taxonomic and other annotations. Unfortunately, the functionality of currently available tools for the creation of such datasets is limited and their usage frequently requires laborious surveying of various data sources and resolving inconsistencies between their versions. RESULTS: To address this problem, we developed localpdb, a versatile Python library for the management of protein structures and their annotations. The library features a flexible plugin system enabling seamless unification of the structural data with diverse auxiliary resources, full version control and powerful functionality of creating highly customized datasets. The localpdb can be used in a wide range of bioinformatic tasks, in particular those involving large-scale protein structural analyses and machine learning. AVAILABILITY AND IMPLEMENTATION: localpdb is freely available at https://github.com/labstructbioinf/localpdb. Documentation along with the usage examples can be accessed at https://labstructbioinf.github.io/localpdb/.


Assuntos
Biologia Computacional , Software , Proteínas , Bases de Dados de Proteínas , Documentação
2.
Bioinformatics ; 35(16): 2790-2795, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30601942

RESUMO

MOTIVATION: Coiled coils are protein structural domains that mediate a plethora of biological interactions, and thus their reliable annotation is crucial for studies of protein structure and function. RESULTS: Here, we report DeepCoil, a new neural network-based tool for the detection of coiled-coil domains in protein sequences. In our benchmarks, DeepCoil significantly outperformed current state-of-the-art tools, such as PCOILS and Marcoil, both in the prediction of canonical and non-canonical coiled coils. Furthermore, in a scan of the human genome with DeepCoil, we detected many coiled-coil domains that remained undetected by other methods. This higher sensitivity of DeepCoil should make it a method of choice for accurate genome-wide detection of coiled-coil domains. AVAILABILITY AND IMPLEMENTATION: DeepCoil is written in Python and utilizes the Keras machine learning library. A web server is freely available at https://toolkit.tuebingen.mpg.de/#/tools/deepcoil and a standalone version can be downloaded at https://github.com/labstructbioinf/DeepCoil. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Sequência de Aminoácidos , Humanos , Aprendizado de Máquina , Domínios Proteicos , Proteínas
3.
J Struct Biol ; 204(1): 117-124, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30042011

RESUMO

In protein modelling and design, an understanding of the relationship between sequence and structure is essential. Using parallel, homotetrameric coiled-coil structures as a model system, we demonstrated that machine learning techniques can be used to predict structural parameters directly from the sequence. Coiled coils are regular protein structures, which are of great interest as building blocks for assembling larger nanostructures. They are composed of two or more alpha-helices wrapped around each other to form a supercoiled bundle. The coiled-coil bundles are defined by four basic structural parameters: topology (parallel or antiparallel), radius, degree of supercoiling, and the rotation of helices around their axes. In parallel coiled coils the latter parameter, describing the hydrophobic core packing geometry, was assumed to show little variation. However, we found that subtle differences between structures of this type were not artifacts of structure determination and could be predicted directly from the sequence. Using this information in modelling narrows the structural parameter space that must be searched and thus significantly reduces the required computational time. Moreover, the sequence-structure rules can be used to explain the effects of point mutations and to shed light on the relationship between hydrophobic core architecture and coiled-coil topology.


Assuntos
Proteínas/química , Interações Hidrofóbicas e Hidrofílicas , Aprendizado de Máquina , Estrutura Secundária de Proteína
4.
Protein Sci ; 33(1): e4846, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010737

RESUMO

In this study, we present a conformational landscape of 5000 AlphaFold2 models of the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) domain, a short helical bundle that transduces signals from sensors to effectors in two-component signaling proteins such as sensory histidine kinases and chemoreceptors. The landscape reveals the conformational variability of the HAMP domain, including rotations, shifts, displacements, and tilts of helices, many combinations of which have not been observed in experimental structures. HAMP domains belonging to a single family tend to occupy a defined region of the landscape, even when their sequence similarity is low, suggesting that individual HAMP families have evolved to operate in a specific conformational range. The functional importance of this structural conservation is illustrated by poly-HAMP arrays, in which HAMP domains from families with opposite conformational preferences alternate, consistent with the rotational model of signal transduction. The only poly-HAMP arrays that violate this rule are predicted to be of recent evolutionary origin and structurally unstable. Finally, we identify a family of HAMP domains that are likely to be dynamic due to the presence of a conserved pi-helical bulge. All code associated with this work, including a tool for rapid sequence-based prediction of the rotational state in HAMP domains, is deposited at https://github.com/labstructbioinf/HAMPpred.


Assuntos
Proteínas de Bactérias , Histidina , Proteínas de Bactérias/química , Conformação Molecular , Transdução de Sinais , Histidina Quinase/genética , Histidina Quinase/metabolismo
5.
Sci Rep ; 9(1): 6888, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053765

RESUMO

Canonical π-helices are short, relatively unstable secondary structure elements found in proteins. They comprise seven or more residues and are present in 15% of all known protein structures, often in functionally important regions such as ligand- and ion-binding sites. Given their similarity to α-helices, the prediction of π-helices is a challenging task and none of the currently available secondary structure prediction methods tackle it. Here, we present PiPred, a neural network-based tool for predicting π-helices in protein sequences. By performing a rigorous benchmark we show that PiPred can detect π-helices with a per-residue precision of 48% and sensitivity of 46%. Interestingly, some of the α-helices mispredicted by PiPred as π-helices exhibit a geometry characteristic of π-helices. Also, despite being trained only with canonical π-helices, PiPred can identify 6-residue-long α/π-bulges. These observations suggest an even higher effective precision of the method and demonstrate that π-helices, α/π-bulges, and other helical deformations may impose similar constraints on sequences. PiPred is freely accessible at: https://toolkit.tuebingen.mpg.de/#/tools/quick2d . A standalone version is available for download at: https://github.com/labstructbioinf/PiPred , where we also provide the CB6133, CB513, CASP10, and CASP11 datasets, commonly used for training and validation of secondary structure prediction methods, with correctly annotated π-helices.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Proteínas/química , Sequência de Aminoácidos , Modelos Moleculares , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa