RESUMO
BACKGROUND: Robust evidence supports the role of α-synuclein pathology as a driver of neuronal dysfunction in Parkinson's disease. PD01A is a specific active immunotherapy with a short peptide formulation targeted against oligomeric α-synuclein. This phase 1 study assessed the safety and tolerability of the PD01A immunotherapeutic in patients with Parkinson's disease. METHODS: We did a first-in-human, randomised, phase 1 study of immunisations with PD01A, followed by three consecutive study extensions. Patients aged 45-65 years with a clinical diagnosis of Parkinson's disease (≤4 years since diagnosis and Hoehn and Yahr Stage 1 to 2), imaging results (dopamine transporter single photon emission CT and MRI) consistent with their Parkinson's disease diagnosis, and on stable doses of Parkinson's disease medications for at least 3 months were recruited at a single private clinic in Vienna, Austria. Patients were randomly assigned (1:1), using a computer-generated sequence with varying block size, to receive four subcutaneous immunisations with either 15 µg or 75 µg PD01A injected into the upper arms and followed up initially for 52 weeks, followed by a further 39 weeks' follow-up. Patients were then randomly assigned (1:1) again to receive the first booster immunisation at 15 µg or 75 µg and were followed up for 24 weeks. All patients received a second booster immunisation of 75 µg and were followed up for an additional 52 weeks. Patients were masked to dose allocation. Primary (safety) analyses included all treated patients. These four studies were registered with EU Clinical Trials Register, EudraCT numbers 2011-002650-31, 2013-001774-20, 2014-002489-54, and 2015-004854-16. FINDINGS: 32 patients were recruited between Feb 14, 2012, and Feb 6, 2013, and 24 were deemed eligible and randomly assigned to receive four PD01A priming immunisations. One patient had a diagnosis change to multiple system atrophy and was withdrawn and two patients withdrew consent during the studies. 21 (87%) of 24 patients received all six immunisations and completed 221-259 weeks in-study (two patients in the 15 µg dose group and one patient in the 75 µg dose group discontinued). All patients experienced at least one adverse event, but most of them were considered unrelated to study treatment (except for transient local injection site reactions, which affected all but one patient). Serial MRI assessments also ruled out inflammatory processes. Systemic treatment-related adverse events were fatigue (n=4), headache (n=3), myalgia (n=3), muscle rigidity (n=2), and tremor (n=2). The geometric group mean titre of antibodies against the immunising peptide PD01 increased from 1:46 at baseline to 1:3580 at week 12 in the 15 µg dose group, and from 1:76 to 1:2462 at week 12 in the 75 µg dose group. Antibody titres returned to baseline over 2 years, but could be rapidly reactivated after booster immunisation from week 116 onwards, reaching geometric group mean titres up to 1:20218. INTERPRETATION: Repeated administrations of PD01A were safe and well tolerated over an extended period. Specific active immunotherapy resulted in a substantial humoral immune response with target engagement. Phase 2 studies are needed to further assess the safety and efficacy of PD01A for the treatment of Parkinson's disease. FUNDING: AFFiRiS, Michael J Fox Foundation.
Assuntos
Imunoterapia/métodos , Doença de Parkinson/tratamento farmacológico , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/uso terapêutico , Peptídeos/imunologia , Peptídeos/uso terapêutico , alfa-Sinucleína/antagonistas & inibidores , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-CegoRESUMO
Prion diseases are fatal neurodegenerative disorders caused by proteinaceous infectious pathogens termed prions (PrP(Sc)). To date, there is no prophylaxis or therapy available for these transmissible encephalopathies. Passive immunization with monclonal antibodies recognizing the normal host-encoded prion protein (PrP(C)) has been reported to abolish PrP(Sc) infectivity and to delay onset of disease. Because of established immunologic tolerance against the widely expressed PrP(C), active immunization appears to be difficult to achieve. To overcome this limitation, papillomavirus-like particles were generated that display a nine amino acid B-cell epitope, DWEDRYYRE, of the murine/rat prion protein in an immunogenic capsid surface loop, by insertion into the L1 major capsid protein of bovine papillomavirus type 1. The PrP peptide was selected on the basis of its previously suggested central role in prion pathogenesis. Immunization with PrP-virus-like particles induced high-titer antibodies to PrP in rabbit and in rat, without inducing overt adverse effects. As determined by peptide-specific ELISA, rabbit immune sera recognized the inserted murine/rat epitope and also cross-reacted with the homologous rabbit/human epitope differing in one amino acid residue. In contrast, rat immune sera recognized the murine/rat peptide only. Sera of both species reacted with PrP(C) in its native conformation in mouse brain and on rat pheochromocytoma cells, as determined by immunoprecipitation and fluorescence-activated cell sorting analysis. Importantly, rabbit anti-PrP serum contained high-affinity antibody that inhibited de novo synthesis of PrP(Sc) in prion-infected cells. If also effective in vivo, PrP-virus-like particle vaccination opens a unique possibility for immunologic prevention of currently fatal and incurable prion-mediated diseases.
Assuntos
Papillomavirus Bovino 1/imunologia , Fragmentos de Peptídeos/imunologia , Proteínas PrPC/imunologia , Proteínas PrPSc/imunologia , Doenças Priônicas/prevenção & controle , Vacinação/métodos , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos/imunologia , Papillomavirus Bovino 1/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Linhagem Celular Tumoral , Epitopos/genética , Epitopos/imunologia , Citometria de Fluxo , Haptenos/genética , Haptenos/imunologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Células PC12 , Fragmentos de Peptídeos/genética , Proteínas PrPC/genética , Doenças Priônicas/imunologia , Coelhos , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/ultraestruturaRESUMO
Epidermolytic hyperkeratosis (EHK) (OMIM 113800) is a generalized skin disease with mostly autosomal dominant inheritance, caused by mutations in keratin 1 or keratin 10. These genes are expressed in suprabasal epidermal layers, resulting in abnormal keratin-intermediate filament cytoskeleton. We present a male patient with generalized hyperkeratosis involving palms and soles. In lesional skin massive hyperkeratosis and cytolysis in the suprabasal layers of the epidermis were observed. Immunohistochemistry staining for keratin 1 (and keratin 10) showed abnormal clumping in suprabasal keratinocytes. By electron microscopy perinuclear intermediate filament clumps were detected in the keratinocytes. A heterozygous missense mutation, designated L187F, was identified in exon 1 of the keratin 1 gene by direct sequencing. This mutation was not detected in his unaffected parents, indicative of a de novo mutational event. The homologous mutation (L187F, also designated L7F) in basal keratin genes keratin 5 or -14 causes epidermolysis bullosa simplex. The amount of keratin 1-mRNA in the patient's skin was not altered compared to controls. We propose that the severe EHK phenotype observed in our patient results from a dominant negative effect of the L187F mutant Keratin 1 allele exerted on keratin 10, the associated partner-keratin. These findings should be helpful for genetic counseling, prenatal diagnosis and studying molecular structure-function relationship in EHK.
Assuntos
Hiperceratose Epidermolítica/genética , Queratina-1/genética , Ceratodermia Palmar e Plantar/genética , Adulto , Humanos , Hiperceratose Epidermolítica/patologia , Ceratodermia Palmar e Plantar/patologia , Masculino , Mutação de Sentido Incorreto , RNA Mensageiro/análiseRESUMO
Clusterin has recently been shown to act as an antiapoptotic protein that confers drug-resistance in models of epithelial tumors. The aim of our work was to provide an insight into a possible role of clusterin in the regulation of drug-resistance in melanoma. In tissue samples, clusterin expression was low in nevi, but high in primary melanoma and melanoma metastases. Clusterin was also strongly expressed in melanoma cell lines, but was barely detectable in cultured melanocytes. To elucidate a possible role of clusterin in drug-resistance of melanoma, clusterin expression was regulated by either plasmid-driven overexpression or by antisense-mediated downregulation. Clusterin overexpression was associated with an increase in drug-resistance, i.e., with an increased survival of melanoma cells in the presence of cytotoxic drugs. In contrast, downregulation of clusterin by 2'-O-(2-methoxy)ethyl (2'MOE)-modified antisense oligonucleotides (AS-ODN) directed against clusterin mRNA significantly reduced drug-resistance, i.e., decreased survival of melanoma cells in the presence of cytotoxic drugs. To evaluate the effects of clusterin-antisense treatment in vivo, we applied an SCID-mouse/human-melanoma xenotransplantation model. Pre-treatment of mice with the 2'MOE-modified clusterin AS-ODN was associated with a significantly improved tumor response to dacarbazine as compared with animals pretreated with a scrambled control oligonucleotide. Taken together, we show that clusterin is strongly expressed in melanoma. Downregulation of clusterin reduces drug-resistance, i.e., reduces melanoma cell survival in response to cytotoxic drugs in vitro and in vivo. Thus, reducing clusterin expression may provide a novel tool to overcome drug-resistance in melanoma.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Glicoproteínas/metabolismo , Melanoma/fisiopatologia , Chaperonas Moleculares/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos Alquilantes/farmacologia , Apoptose , Linhagem Celular Tumoral , Clusterina , Dacarbazina/farmacologia , Regulação para Baixo , Glicoproteínas/genética , Humanos , Melanócitos/metabolismo , Melanoma/patologia , Camundongos , Camundongos SCID , Chaperonas Moleculares/genética , Transplante de Neoplasias , Oligonucleotídeos Antissenso/farmacologia , Transplante HeterólogoRESUMO
Viruses can escape destruction by the immune system by exploitation of the chemokine-chemokine receptor system. It is less established whether human cancers can adopt similar strategies to evade immunologic control. In this study, we show that advanced cutaneous T cell lymphoma (CTCL) is associated with selective and efficient inactivation of CXCR3-dependent T cell migration. Our studies demonstrate that this alteration is at least in part due to CXCR3 down-regulation in vivo by elevated serum levels of CXCR3 ligands. The T cell population most affected by this down-regulatory mechanism are CD8+ cytotoxic effector T cells. In CTCL patients, cytotoxic effector T cells have strongly reduced surface CXCR3 expression, accumulate in peripheral blood, but are virtually absent from CTCL tumor lesions, indicating an inability to extravasate into lymphoma tissue. CTCL-associated inactivation of effector cell recruitment may be a paradigmatic example of a new type of immune escape mechanisms shielding the neoplasm from a tumoricidal attack.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação para Baixo/imunologia , Linfoma Cutâneo de Células T/imunologia , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/biossíntese , Neoplasias Cutâneas/imunologia , Linfócitos T CD8-Positivos/patologia , Membrana Celular , Movimento Celular/imunologia , Células Cultivadas , Selectina E/biossíntese , Selectina E/metabolismo , Endossomos/metabolismo , Células Endoteliais/metabolismo , Humanos , Memória Imunológica , Células K562 , Selectina L/biossíntese , Ligantes , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/terapia , Lisossomos/metabolismo , Receptores CXCR3 , Receptores de Quimiocinas/fisiologia , Fase de Repouso do Ciclo Celular/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Células Tumorais Cultivadas , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/metabolismoRESUMO
The life cycle of dendritic cells (DCs) must be precisely regulated for proper functioning of adaptive immunity. However, signaling pathways actively mediating DC death remain enigmatic. Here we describe a novel mechanism of hierarchical transcriptional control of DC life and death. Ligation of tumor necrosis factor receptor superfamily (TNFR-SF) members on DCs and cognate contact with T cells resulted in quantitatively balanced nuclear factor-kappaB (NF-kappaB) and c-Jun N-terminal kinase (JNK)-mediated activator protein-1 (AP-1) induction and strongly enhanced DC longevity. Specific blockade of NF-kappaB in DCs induced strongly augmented JNK/AP-1 activity because of elevated levels of reactive oxygen species. In this scenario, DC activation by TNFR-SF members or T cells induced DC apoptosis. Specific inhibition of JNK/AP-1 rescued DCs from this activation-induced cell death program and restored TNFR-SF member- and T-cell-mediated survival. We conclude that JNK/AP-1 activity is under negative feedback control of NF-kappaB and can execute apoptosis in DCs. Thus, feedback-controlled signaling amplitudes of 2 transcriptional pathways decide the fate of a DC.
Assuntos
Células Dendríticas/citologia , Células Dendríticas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Antígenos CD40/metabolismo , Comunicação Celular/imunologia , Morte Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Células Epidérmicas , Humanos , Proteínas I-kappa B/genética , Células de Langerhans/citologia , Células de Langerhans/metabolismo , Mitocôndrias/metabolismo , Inibidor de NF-kappaB alfa , Estresse Oxidativo/imunologia , Transdução de Sinais/imunologia , Linfócitos T/citologia , Ativação Transcricional/imunologia , TransfecçãoRESUMO
Therapeutic vaccination against cutaneous T cell lymphoma (CTCL) requires the characterization of cancer cell-specific CTL epitopes. Despite reported evidence for tumor-reactive cytotoxicity in CTCL patients, the nature of the recognized determinants remains elusive. The clonotypic TCR of CTCL cells is a promising candidate tumor-specific Ag. In this study, we report that the clonotypic and framework regions of the TCRs expressed in the malignant T cell clones of six CTCL patients contain multiple peptides with anchor residues fitting the patients' MHC class I molecules. We demonstrate that TCR peptide-specific T cells from the blood of healthy donors and patients can be induced to become cytotoxic effectors after repeated stimulation with 6 of 11 selected peptides with experimentally proven affinity for HLA-A*0201. Importantly, 4 of these 6 CTL lines reproducibly recognize and lyse autologous primary CTCL cells in MHC class I/CD8-dependent fashion. These tumoricidal CTL lines are directed against epitopes from V, hypervariable, and C regions of TCRalpha. We therefore conclude that recombined as well as V framework regions of the tumor cell TCRs contain predictable epitopes for CTL-mediated attack of CTCL cells. Our data further suggest that such peptides represent valuable tools for future anti-CTCL vaccination approaches.