RESUMO
ABSTRACT: Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMß2-dependent migration on fibrinogen but not for integrin ß1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in ß-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-ß-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.
Assuntos
Fator VIIa , Monócitos , Animais , Camundongos , Fator VIIa/metabolismo , Monócitos/metabolismo , Tromboplastina/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Transdução de Sinais/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrinogênio/metabolismo , beta-Arrestinas/metabolismoRESUMO
Tumor-associated macrophages facilitate tumor progression and resistance to therapy. Their capacity for metabolic and inflammatory reprogramming represents an attractive therapeutic target. ONC201/TIC10 is an anticancer molecule that antagonizes the dopamine receptor D2 and affects mitochondria integrity in tumor cells. We examined whether ONC201 induces a metabolic and pro-inflammatory switch in primary human monocyte-derived macrophages that reactivates their antitumor activities, thus enhancing the onco-toxicity of ONC201. Contrary to glioblastoma cells, macrophages exhibited a low ratio of dopamine receptors D2/D5 gene expression and were resistant to ONC201 cytotoxicity. Macrophages responded to ONC201 with a severe loss of mitochondria integrity, a switch to glycolytic ATP production, alterations in glutamate transport, and a shift towards a pro-inflammatory profile. Treatment of macrophages-glioblastoma cells co-cultures with ONC201 induced similar alterations in glutamatergic and inflammatory gene expression profiles of macrophages. It induced as well metabolic changes and a pro-inflammatory switch of the co-culture milieu. However, these changes did not translate into increased onco-toxicity. This study provides the first evidence that ONC201 affects macrophage immunometabolism and leads to a pro-inflammatory tumor environment. This speaks in favor of implementing ONC201 in combinatorial therapies and warrants further investigation of the mechanisms of action of ONC201 in macrophages and other immune cells.
Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Imidazóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Ácido Glutâmico/metabolismo , Humanos , Macrófagos/imunologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D5/genética , Receptores de Dopamina D5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismoRESUMO
BACKGROUND: Carfilzomib's (Cfz) adverse events in myeloma patients include cardiovascular toxicity. Since carfilzomib's vascular effects are elusive, we investigated the vascular outcomes of carfilzomib and metformin (Met) coadministration. METHODS: Mice received: (i) saline; (ii) Cfz; (iii) Met; (iv) Cfz+Met for two consecutive (acute) or six alternate days (subacute protocol). Leucocyte-derived reactive oxygen species (ROS) and serum NOx levels were determined and aortas underwent vascular and molecular analyses. Mechanistic experiments were recapitulated in aged mice who received similar treatment to young animals. Primary murine (prmVSMCs) and aged human aortic smooth muscle cells (HAoSMCs) underwent Cfz, Met and Cfz+Met treatment and viability, metabolic flux and p53-LC3-B expression were measured. Experiments were recapitulated in AngII, CoCl2 and high-glucose stimulated HAoSMCs. RESULTS: Acutely, carfilzomib alone led to vascular hypo-contraction and increased ROS release. Subacutely, carfilzomib increased ROS release without vascular manifestations. Cfz+Met increased PGF2α-vasoconstriction and LC3-B-dependent autophagy in both young and aged mice. In vitro, Cfz+Met led to cytotoxicity and autophagy, while Met and Cfz+Met shifted cellular metabolism. CONCLUSION: Carfilzomib induces a transient vascular impairment and oxidative burst. Cfz+Met increased vascular contractility and synergistically induced autophagy in all settings. Therefore, carfilzomib cannot be accredited for a permanent vascular dysfunction, while Cfz+Met exert vasoprotective potency.
Assuntos
Antineoplásicos/farmacologia , Metformina/administração & dosagem , Miócitos de Músculo Liso/efeitos dos fármacos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/toxicidade , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Actinas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobalto/farmacologia , Dinoprosta/farmacologia , Quimioterapia Combinada , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
BACKGROUND: Epidemiology links noise to increased risk of metabolic diseases like diabetes and obesity. Translational studies in humans and experimental animals showed that noise causes reactive oxygen species (ROS)-mediated cardiovascular damage. The interaction between noise and diabetes, specifically potential additive adverse effects, remains to be determined. METHODS AND RESULTS: C57BL/6 mice were treated with streptozotocin (i.p. injections, 50 mg/kg/d for 5d) to induce type-1 diabetes, with S961 (subcutaneous osmotic minipumps, 0.57 mg/kg/d for 7d) or fed a high-fat diet (HFD, 20 weeks) to induce type-2 diabetes. Control and diabetic mice were exposed to aircraft noise to an average sound pressure level of 72 dB(A) for 4d. While body weight was unaffected, noise reduced insulin production in all diabetes models. The oral glucose tolerance test showed only an additive aggravation by noise in the HFD model. Noise increased blood pressure and aggravated diabetes-induced aortic, mesenteric, and cerebral arterioles endothelial dysfunction. ROS formation in cerebral arterioles, the aorta, the heart, and isolated mitochondria was consistently increased by noise in all models of diabetes. Mitochondrial respiration was impaired by diabetes and noise, however without additive effects. Noise increased ROS and caused inflammation in adipose tissue in the HFD model. RNA sequencing data and alteration of gene pathway clusters also supported additive damage by noise in the setting of diabetes. CONCLUSION: In all three models of diabetes, aircraft noise exacerbates oxidative stress, inflammation, and endothelial dysfunction in mice with pre-existing diabetes. Thus, noise may potentiate the already increased cardiovascular risk in diabetic patients.
Traffic noise significantly contributes to an increased risk of cardiometabolic diseases (including diabetes and obesity) in the general population via stress hormones, inflammation and oxidative stress, all of which contribute to impaired vascular function and high blood pressure. However, the extent to which noise affects pre-existing diabetes is not sufficiently explained, which prompted us to investigate the molecular mechanisms responsible for noise-mediated exacerbation of cardiometabolic complications in three different animal models with diabetes mellitus: Noise exposure in diabetic mice caused further impairment of insulin signalling, increased blood pressure, and damage of small and large blood vessels as well as oxidative stress in the aorta, brain, and heart.Our functional observations were supported by gene analyses indicating combined effects of noise and diabetes on gene groups related to inflammation and metabolism, suggesting a need for further studies in humans to investigate how noise impacts cardiovascular risk in vulnerable groups such as patients with diabetes.
RESUMO
Obesity promotes endothelial dysfunction. Endothelial cells not only respond, but possibly actively promote the development of obesity and metabolic dysfunction. Our aim was to characterize the role of endothelial leptin receptors (LepR) for endothelial and whole body metabolism and diet-induced obesity. Mice with tamoxifen-inducible, Tie2.Cre-ERT2-mediated deletion of LepR in endothelial cells (End.LepR knockout, KO) were fed high-fat diet (HFD) for 16 weeks. Body weight gain, serum leptin levels, visceral adiposity and adipose tissue inflammation were more pronounced in obese End.LepR-KO mice, whereas fasting serum glucose and insulin levels or the extent of hepatic steatosis did not differ. Reduced brain endothelial transcytosis of exogenous leptin, increased food intake and total energy balance were observed in End.LepR-KO mice and accompanied by brain perivascular macrophage accumulation, whereas physical activity, energy expenditure and respiratory exchange rates did not differ. Metabolic flux analysis revealed no changes in the bioenergetic profile of endothelial cells from brain or visceral adipose tissue, but higher glycolysis and mitochondrial respiration rates in those isolated from lungs. Our findings support a role for endothelial LepRs in the transport of leptin into the brain and neuronal control of food intake, and also suggest organ-specific changes in endothelial cell, but not whole-body metabolism.
Assuntos
Leptina , Receptores para Leptina , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Metabolismo Energético , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismoRESUMO
AIMS: Traffic noise may play an important role in the development and deterioration of ischaemic heart disease. Thus, we sought to determine the mechanisms of cardiovascular dysfunction and inflammation induced by aircraft noise in a mouse model of myocardial infarction (MI) and in humans with incident MI. METHODS AND RESULTS: C57BL/6J mice were exposed to noise alone (average sound pressure level 72 dB; peak level 85 dB) for up to 4 days, resulting in pro-inflammatory aortic gene expression in the myeloid cell adhesion/diapedesis pathways. The noise alone promoted adhesion and infiltration of inflammatory myeloid cells in vascular/cardiac tissue, paralleled by an increased percentage of leucocytes with a pro-inflammatory, reactive oxygen species (ROS)-producing phenotype and augmented expression of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase type 2 (Nox2)/phosphorylation of nuclear factor 'kappa light chain enhancer' of activated B-cells (phospho-NFκB) in peripheral blood. Ligation of the left anterior descending artery resulted in worsening of cardiac function, pronounced cardiac infiltration of CD11b+ myeloid cells and Ly6Chigh monocytes, and induction of interleukin (IL) 6, IL-1ß, CCL-2, and Nox2, being aggravated by noise exposure prior to MI. MI induced stronger endothelial dysfunction and more pronounced increases in vascular ROS in animals preconditioned with noise. Participants of the population-based Gutenberg Health Cohort Study (median follow-up:11.4 years) with incident MI revealed elevated C-reactive protein at baseline and worse left ventricular ejection fraction (LVEF) after MI in case of a history of noise exposure and subsequent annoyance development. CONCLUSION: Aircraft noise exposure before MI substantially amplifies subsequent cardiovascular inflammation and aggravates ischaemic heart failure, facilitated by a pro-inflammatory vascular conditioning. Our translational results suggest that measures to reduce environmental noise exposure will be helpful in improving the clinical outcome of subjects with MI.Key questionKey finding Take-home-MessageAircraft noise exposure before MI substantially amplifies cardiovascular inflammation and aggravates cardiac impairment after MI.