Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 12(2): 1385-1396, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35111632

RESUMO

BACKGROUND: Advances in 3D printing technology allow us to continually find new medical applications. One of them is 3D printing of aortic templates to guide vascular surgeons or interventional radiologists to create fenestrations in the stent-graft surface for the implantation procedure called fenestrated endovascular aortic aneurysm repair. It is believed that the use of 3D printing significantly improves the quality of modified fenestrated stent-grafts. However, the accuracy and reliability of personalized 3D printed models of aortic templates are not well established. METHODS: Thirteen 3D printed templates of the visceral aorta and sixteen of the aortic arch and their corresponding computer tomography of angiography images were included in this accuracy study. The 3D models were scanned in the same conditions on computed tomography (CT) and evaluated by three physicians experienced in vascular CT assessment. Model and patient CT measurements were performed at key landmarks to maintain quality for stent-graft modification, including side branches and aortic diameters. CT-scanned aortic templates were segmented, aligned with sourced patient data, and evaluated for the Hausdorff matrix. Next, Bland-Altman plots determined the degree of agreement. RESULTS: The Intraclass Correlation Coefficients values were more than 0.9 for all measurements of aortic diameters and aortic branches diameter in all landmark locations. Therefore, the reliability of the aortic templates was considered excellent. The Bland-Altman plots analysis indicated measurement biases of 0.05 to 0.47 for aortic arch templates and 0.06 to 0.38 for reno-visceral aortic templates. The arithmetic mean of Hausdorff's mean distances of the aortic arch templates was 0.47 mm (SD =0.06) and ranged from 0.34 to 0.58. The mean metrics for abdominal models was 0.24 mm (SD =0.03) and ranged from 0.21 to 0.31. CONCLUSIONS: The printed models of 3D aortic templates are accurate and reliable, thus can be widely used in endovascular surgery and interventional radiology departments as aortic templates to guide the physician-modified fenestrated stent-graft fabrication.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa