Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542127

RESUMO

There is an increasing concern about the presence of various types of pharmaceuticals in drinking water, as long-term exposure of people to even low concentrations of drugs can lead to many problems, such as endocrine disorders or drug resistance. As the removal in sewage treatment plants is not effective enough, as indicated, among others, by the EC and OECD reports, it is justified to search for new materials that will allow for an effective and rapid reduction of these pollutants in water. Therefore, in our work, catalytically active nanomaterials containing platinum group metals (PGMs) were synthesized from model and real multicomponent solutions and examined in reactions of organic compounds. The nanoparticles (NPs) were obtained from real solutions from the hydrometallurgical processing of spent automotive converters (SACs), and to the best of our knowledge, the novelty of the proposed paper is the application of solutions from SAC processing as precursors for PGM-NPs. The synthesized PGM-NPs were deposited on a support (TiO2), characterized and, finally, examined as nanocatalysts in a degradation reaction of ibuprofen (IB) from model aqueous solutions. The degree of IB degradation reached more than 90%. The main products of IB degradation were p-isobutylphenol and CO2.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Ibuprofeno , Metais , Água , Poluentes Químicos da Água/análise
2.
Molecules ; 28(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446850

RESUMO

This article presents studies on the precipitation of Pt, Pd, Rh, and Ru nanoparticles (NPs) from model and real multicomponent solutions using sodium borohydride, ascorbic acid, sodium formate, and formic acid as reducing agents and polyvinylpyrrolidone as a stabilizing agent. As was expected, apart from PGMs, non-precious metals were coprecipitated. The influence of the addition of non-precious metal ions into the feed solution on the precipitation yield and catalytic properties of the obtained precipitates was studied. A strong reducing agent, NaBH4 precipitates Pt, Pd, Rh, Fe and Cu NPs in most cases with an efficiency greater than 80% from three- and four-component model solutions. The morphology of the PGMs nanoparticles was analyzed via SEM-EDS and TEM. The size of a single nanoparticle of each precipitated metal was not larger than 5 nm. The catalytic properties of the obtained nanomaterials were confirmed via the reaction of the reduction of 4-nitrophenol (NPh) to 4-aminophenol (NAf). Nanocatalysts containing Pt/Pd/Fe NPs obtained from a real solution (produced as a result of the leaching of spent automotive catalysts) showed high catalytic activity (86% NPh conversion after 30 min of reaction at pH 11 with 3 mg of the nanocatalyst).


Assuntos
Metais , Nanopartículas , Catálise , Paládio/química , Platina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa