Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Genomics Proteomics ; 21(4): 361-367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944426

RESUMO

BACKGROUND/AIM: Breast cancer (BC) is the most common malignant disease worldwide. Localized stages of BC can be successfully treated by surgery. However, local recurrence occurs in about 4-10% of patients, requiring systemic treatments that impair the patients' quality of life and shortens life expectancy. Therefore, new therapeutic options are needed, which can be used intraoperatively and contribute to the complete removal of residual tumor cells in the surgical area. In the present study, we describe a cysteine-modified variant of the anti-HER2 antibody trastuzumab, that was coupled to the silicon phthalocyanine photosensitizer dye WB692-CB1 for the photoimmunotherapy (PIT) of BC. MATERIALS AND METHODS: The cysteine modified trastuzumab variant was cloned and expressed in Expi293F cells. After purification via immobilized affinity chromatography, the antibody was coupled to the dye. Cell binding of the antibody and the antibody dye conjugate was measured by flow cytometry. After incubation of BC cells with the conjugate and activation of the dye by irradiation with red light, cell viability was determined. RESULTS: The antibody and the conjugate showed specific binding to HER2-expressing BC cells. Treatment of the HER2high BC cell line SK-BR-3 with the conjugate followed by irradiation with a red light dose of 32 J/cm2 led to complete cell killing within 24 h. CONCLUSION: Our novel antibody dye conjugate represents a promising candidate for intraoperative treatment of localized BC, aiming to eliminate residual tumor cells in the surgical area and potentially reduce local recurrence, thereby improving recovery prospects for BC patients.


Assuntos
Neoplasias da Mama , Imunoterapia , Receptor ErbB-2 , Trastuzumab , Humanos , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Receptor ErbB-2/metabolismo , Imunoterapia/métodos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Fototerapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral
2.
Anticancer Res ; 44(5): 1837-1844, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677753

RESUMO

BACKGROUND/AIM: Although there are curative treatment options for non-muscle-invasive bladder cancer, the recurrence of this tumor is high. Therefore, novel targeted therapies are needed for the complete removal of bladder cancer cells in stages of localized disease, in order to avoid local recurrence, to spare bladder cancer patients from stressful and expensive treatment procedures and to increase their quality of life and life expectancy. This study tested a new approach for the photoimmunotherapy (PIT) of bladder cancer. MATERIALS AND METHODS: We generated a cysteine modified recombinant version of the antibody cetuximab targeting the epidermal growth factor receptor (EGFR) on the surface of bladder cancer cells. Then, we coupled the novel photoactivatable phthalocyanine dye WB692-CB1 via a maleimide linker to the free cysteines of the antibody. PIT was performed by incubating bladder cancer cells with the antibody dye conjugate followed by irradiation with visible red light. RESULTS: The conjugate was able to induce specific cytotoxicity in EGFR-positive bladder cancer cells in a light dose-dependent manner. Enhanced cytotoxicity in RT112 bladder cancer cells was evoked by addition of a second antibody dye conjugate targeting HER2 or by repeated cycles of PIT. CONCLUSION: Our new antibody dye conjugate targeting EGFR-expressing bladder cancer cells is a promising candidate for the future PIT of bladder cancer patients.


Assuntos
Receptores ErbB , Imunoconjugados , Imunoterapia , Receptor ErbB-2 , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Receptores ErbB/imunologia , Receptores ErbB/antagonistas & inibidores , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Imunoterapia/métodos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Linhagem Celular Tumoral , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Cetuximab/química , Fototerapia/métodos
3.
Anticancer Res ; 44(6): 2343-2348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821609

RESUMO

BACKGROUND/AIM: The standard treatment for localized prostate cancer involves surgical removal of the prostate with curative intent. However, when tumor cells persist in the operation site, there is high risk of local recurrence and tumor spread, leading to stressful follow-up treatments, impaired quality of life, and reduced overall survival. This study examined photoimmunotherapy (PIT) as a new treatment option for prostate cancer cells. MATERIALS AND METHODS: We generated conjugates consisting of either a humanized antibody or Fab fragments thereof targeting the prostate specific membrane antigen (PSMA), along with our silicon phthalocyanine photosensitizer dye WB692-CB1. PSMA-expressing prostate cancer cells were incubated with the antibody dye or Fab dye conjugates and cell binding was measured using flow cytometry. Cells were irradiated with varying doses of red light for dye activation, and cytotoxicity was determined by erythrosin B staining and subsequent analysis using a Neubauer counting chamber. RESULTS: Specific cytotoxicity was induced with the antibody dye conjugate in the prostate cancer cells in a light dose-dependent manner. Treatment of the cells with the Fab dye conjugate resulted in lower cytotoxicity, which could be attributed to a reduced binding affinity and a reduced dye uptake of the Fab fragment. CONCLUSION: Our new antibody dye and Fab dye conjugates offer potential for future intraoperative PIT in patients with localized prostate cancer, with the aim to ensure complete removal of tumor cells from the surgical area, to avoid local recurrence, and to improve clinical outcome.


Assuntos
Antígenos de Superfície , Fragmentos Fab das Imunoglobulinas , Imunoterapia , Neoplasias da Próstata , Humanos , Masculino , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Imunoterapia/métodos , Linhagem Celular Tumoral , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/imunologia , Glutamato Carboxipeptidase II/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia/métodos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico
4.
J Cancer ; 14(16): 3039-3049, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859824

RESUMO

Treatment of advanced prostate cancer lacks specificity and curative intent. Therefore, the need for new targeted therapeutic approaches is high. In the present study, we generated the new targeted toxin EGF-PE24mutΔREDLK binding to the epidermal growth factor receptor (EGFR) on the surface of prostate cancer cells. It consists of the human epidermal growth factor (EGF) as binding domain and a de-immunized variant of Pseudomonas Exotoxin A (PE), called PE24mutΔREDLK, as toxin domain. The toxin domain contains a deletion of the C-terminal KDEL-like motif REDLK to prevent its transport from sorting endosomes via the KDEL receptor mediated pathway into the cytosol, where it can inhibit cellular protein biosynthesis and induce apoptosis. Indeed, REDLK deletion resulted in a strong decrease in cytotoxicity of the targeted toxin in prostate cancer cells compared to the parental targeted toxin EGF-PE24mut. However, addition of the plant glycosylated triterpenoid SO1861, which is known to mediate the release of biomolecules from endolysosomal compartments into the cytosol, resulted in an up to almost 7,000-fold enhanced synergistic cytotoxicity. Moreover, combination of PE24mutΔREDLK with SO1861 led to a cytotoxicity that was even 16- to 300-fold enhanced compared to that of EGF-PE24mut. Endolysosomal entrapment of the non-toxic targeted toxin EGF-PE24mutΔREDLK followed by activation through enhanced endosomal escape therefore represents a new promising approach for the future treatment of advanced prostate cancer with high efficacy and diminished side effects.

5.
Front Pharmacol ; 14: 1211824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484018

RESUMO

Immunotoxins consist of an antibody or antibody fragment that binds to a specific cell surface structure and a cytotoxic domain that kills the cell after cytosolic uptake. Pseudomonas Exotoxin A (PE) based immunotoxins directed against a variety of tumor entities have successfully entered the clinic. PE possesses a KDEL-like motif (REDLK) that enables the toxin to travel from sorting endosomes via the KDEL-receptor pathway to the endoplasmic reticulum (ER), from where it is transported into the cytosol. There, it ADP-ribosylates the eukaryotic elongation factor 2, resulting in ribosome inhibition and finally apoptosis. One major problem of immunotoxins is their lysosomal degradation causing the need for much more immunotoxin molecules than finally required for induction of cell death. The resulting dose limitations and substantially increased side effects require new strategies to achieve improved cytosolic uptake. Here we generated an immunotoxin consisting of a humanized single chain variable fragment (scFv) targeting the prostate specific membrane antigen (PSMA) and the de-immunized PE variant PE24mut. This immunotoxin, hD7-1(VL-VH)-PE24mut, showed high and specific cytotoxicity in PSMA-expressing prostate cancer cells. We deleted the REDLK sequence to prevent transport to the ER and achieve endosomal entrapment. The cytotoxicity of this immunotoxin, hD7-1(VL-VH)-PE24mutΔREDLK, was greatly reduced. To restore activity, we added the endosomal escape enhancer SO1861 and observed an up to 190,000-fold enhanced cytotoxicity corresponding to a 57-fold enhancement compared to the initial immunotoxin with the REDLK sequence. A biodistribution study with different routes of administration clearly showed that the subcutaneous injection of hD7-1(VL-VH)-PE24mutΔREDLK in mice resulted in the highest tumor uptake. Treatment of mice bearing prostate tumors with a combination of hD7-1(VL-VH)-PE24mutΔREDLK plus SO1861 resulted in inhibition of tumor growth and enhanced overall survival compared to the monotherapies. The endosomal entrapment of non-toxic anti-PSMA immunotoxins followed by enhanced endosomal escape by SO1861 provides new therapeutic options in the future management of prostate cancer.

6.
Front Oncol ; 12: 935715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875084

RESUMO

Despite decades of research and successful improvements in diagnosis and therapy, prostate cancer (PC) remains a major challenge. In recent years, it has become clear that PC stem cells (PCSCs) are the driving force in tumorigenesis, relapse, metastasis, and therapeutic resistance of PC. In this minireview, we discuss the impact of PCSCs in the clinical practice. Moreover, new therapeutic approaches to combat PCSCs are presented with the aim to achieve an improved outcome for patients with PC.

7.
Anticancer Res ; 41(8): 3741-3746, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281832

RESUMO

BACKGROUND/AIM: Reports on over-expression of the epidermal growth factor receptor (EGFR) in bladder cancer and its function in tumorigenesis have suggested to target this antigen. MATERIALS AND METHODS: We generated the targeted toxin EGF-PE40 consisting of the human epidermal growth factor (EGF) as the binding domain and PE40, a truncated version of Pseudomonas Exotoxin A, as the toxin domain. EGF-PE40 was tested on EGFR-expressing bladder cancer cells in view of binding via flow cytometry, and cytotoxicity via WST viability assay. Induction of apoptosis was examined by western blot. RESULTS: The targeted toxin specifically triggered cytotoxicity in the bladder cancer cells with 50% inhibitory concentration (IC50) values in the low nanomolar or picomolar range, and was about 1,250- to 1,500-fold more cytotoxic than the EGFR inhibitor erlotinib. Cytotoxicity of EGF-PE40 was based on the induction of apoptosis. CONCLUSION: EGF-PE40 represents a promising candidate for the future treatment of bladder cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Fator de Crescimento Epidérmico/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , ADP Ribose Transferases/química , Animais , Toxinas Bacterianas/química , Células CHO , Linhagem Celular Tumoral , Cricetulus , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Exotoxinas/química , Humanos , Fatores de Virulência/química , Exotoxina A de Pseudomonas aeruginosa
8.
Toxins (Basel) ; 12(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260619

RESUMO

The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the natural ligand EGF as binding domain and PE40, the natural toxin domain of Pseudomonas Exotoxin A, or PE24mut, the de-immunized variant thereof, as toxin domains. Both targeted toxins were expressed in the periplasm of E.coli and evoked an inhibition of protein biosynthesis in EGFR-expressing PCa cells. Concentration- and time-dependent killing of PCa cells was found with IC50 values after 48 and 72 h in the low nanomolar or picomolar range based on the induction of apoptosis. EGF-PE24mut was found to be about 11- to 120-fold less toxic than EGF-PE40. Both targeted toxins were more than 600 to 140,000-fold more cytotoxic than the EGFR inhibitor erlotinib. Due to their high and specific cytotoxicity, the EGF-based targeted toxins EGF-PE40 and EGF-PE24mut represent promising candidates for the future treatment of PCa.


Assuntos
ADP Ribose Transferases/uso terapêutico , Toxinas Bacterianas/uso terapêutico , Exotoxinas/uso terapêutico , Imunotoxinas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Fatores de Virulência/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular , Cricetulus , Receptores ErbB/antagonistas & inibidores , Humanos , Masculino , Células PC-3 , Proteínas Recombinantes de Fusão/uso terapêutico , Exotoxina A de Pseudomonas aeruginosa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa