Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 286(12): 10137-46, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21257754

RESUMO

Saccharomyces cerevisiae cells lacking Mne1 are deficient in intron splicing in the gene encoding the Cox1 subunit of cytochrome oxidase but contain wild-type levels of the bc(1) complex. Thus, Mne1 has no role in splicing of COB introns or expression of the COB gene. Northern experiments suggest that splicing of the COX1 aI5ß intron is dependent on Mne1 in addition to the previously known Mrs1, Mss116, Pet54, and Suv3 factors. Processing of the aI5ß intron is similarly impaired in mne1Δ and mrs1Δ cells and overexpression of Mrs1 partially restores the respiratory function of mne1Δ cells. Mrs1 is known to function in the initial transesterification reaction of splicing. Mne1 is a mitochondrial matrix protein loosely associated with the inner membrane and is found in a high mass ribonucleoprotein complex specifically associated with the COX1 mRNA even within an intronless strain. Mne1 does not appear to have a secondary function in COX1 processing or translation, because disruption of MNE1 in cells containing intronless mtDNA does not lead to a respiratory growth defect. Thus, the primary defect in mne1Δ cells is splicing of the aI5ß intron in COX1.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Íntrons/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Splicing de RNA/fisiologia , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Biossíntese de Proteínas/fisiologia , RNA Fúngico/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochem J ; 424(3): 467-78, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19761441

RESUMO

The euryarchaeon Methanosarcina acetivorans has no homologues of the first three enzymes that produce the essential methanogenic coenzyme M (2-mercaptoethanesulfonate) in Methanocaldococcus jannaschii. A single M. acetivorans gene was heterologously expressed to produce a functional sulfopyruvate decarboxylase protein, the fourth canonical enzyme in this biosynthetic pathway. An adjacent gene, at locus MA3297, encodes one of the organism's two threonine synthase homologues. When both paralogues from this organism were expressed in an Escherichia coli threonine synthase mutant, the MA1610 gene complemented the thrC mutation, whereas the MA3297 gene did not. Both PLP (pyridoxal 5'-phosphate)-dependent proteins were heterologously expressed and purified, but only the MA1610 protein catalysed the canonical threonine synthase reaction. The MA3297 protein specifically catalysed a new beta-replacement reaction that converted L-phosphoserine and sulfite into L-cysteate and inorganic phosphate. This oxygen-independent mode of sulfonate biosynthesis exploits the facile nucleophilic addition of sulfite to an alpha,beta-unsaturated intermediate (PLP-bound dehydroalanine). An amino acid sequence comparison indicates that cysteate synthase evolved from an ancestral threonine synthase through gene duplication, and the remodelling of active site loop regions by amino acid insertion and substitutions. The cysteate product can be converted into sulfopyruvate by an aspartate aminotransferase enzyme, establishing a new convergent pathway for coenzyme M biosynthesis that appears to function in members of the orders Methanosarcinales and Methanomicrobiales. These differences in coenzyme M biosynthesis afford the opportunity to develop methanogen inhibitors that discriminate between the classes of methanogenic archaea.


Assuntos
Proteínas Arqueais/genética , Carbono-Oxigênio Liases/genética , Evolução Molecular , Mesna/metabolismo , Methanosarcinales/genética , Proteínas Arqueais/metabolismo , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Carbono-Oxigênio Liases/classificação , Carbono-Oxigênio Liases/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Catálise , Ácido Cisteico/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Methanosarcina/enzimologia , Methanosarcina/genética , Methanosarcina/metabolismo , Methanosarcinales/enzimologia , Methanosarcinales/metabolismo , Mutação , Fosfosserina/metabolismo , Filogenia , Sulfitos/metabolismo
3.
J Bacteriol ; 191(21): 6665-74, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19717586

RESUMO

The Escherichia coli RNA degradosome is a protein complex that plays a critical role in the turnover of numerous RNAs. The key component of the degradosome complex is the endoribonuclease RNase E, a multidomain protein composed of an N-terminal catalytic region and a C-terminal region that organizes the other protein components of the degradosome. Previously, the RNase E inhibitors RraA and RraB were identified genetically and shown to bind to the C-terminal region of RNase E, thus affecting both the protein composition of the degradosome and the endonucleolytic activity of RNase E. In the present work, we investigated the transcriptional regulation of rraB. rraB was shown to be transcribed constitutively from its own promoter, PrraB. Transposon mutagenesis and screening for increased beta-galactosidase activity from a chromosomal PrraB-lacZ transcriptional fusion resulted in the isolation of a transposon insertion in glmS, encoding the essential enzyme glucosamine-6-phosphate synthase that catalyzes the first committed step of the uridine 5'-diphospho-N-acetyl-glucosamine (UDP-GlcNAc) pathway, which provides intermediates for peptidoglycan biogenesis. The glmS852::Tn5 allele resulted in an approximately 50% lower intracellular concentration of UDP-GlcNAc and conferred a fivefold increase in the level of rraB mRNA. This allele also mediated a twofold increase in beta-galactosidase activity from a chromosomal fusion of the 5' untranslated region of the rne gene to lacZ, suggesting that a reduction in cellular concentration of UDP-GlcNAc and the resulting increased expression of RraB might modulate the action of RNase E.


Assuntos
Endorribonucleases/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Transcrição Gênica/fisiologia , Bacteriemia/genética , Sequência de Bases , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Ligação Proteica
4.
J Mol Biol ; 411(3): 661-79, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21679717

RESUMO

The yeast DEAD-box protein Mss116p functions as a general RNA chaperone in splicing mitochondrial group I and group II introns. For most of its functions, Mss116p is thought to use ATP-dependent RNA unwinding to facilitate RNA structural transitions, but it has been suggested to assist in the folding of one group II intron (aI5γ) primarily by stabilizing a folding intermediate. Here we compare three aI5γ constructs: one with long exons, one with short exons, and a ribozyme construct lacking exons. The long exons result in slower splicing, suggesting that they misfold and/or stabilize nonnative intronic structures. Nevertheless, Mss116p acceleration of all three constructs depends on ATP and is inhibited by mutations that compromise RNA unwinding, suggesting similar mechanisms. Results of splicing assays and a new two-stage assay that separates ribozyme folding and catalysis indicate that maximal folding of all three constructs by Mss116p requires ATP-dependent RNA unwinding. ATP-independent activation is appreciable for only a subpopulation of the minimal ribozyme construct and not for constructs containing exons. As expected for a general RNA chaperone, Mss116p can also disrupt the native ribozyme, which can refold after Mss116p removal. Finally, using yeast strains with mitochondrial DNA containing only the single intron aI5γ, we show that Mss116p mutants promote splicing in vivo to degrees that correlate with their residual ATP-dependent RNA-unwinding activities. Together, our results indicate that, although DEAD-box proteins play multiple roles in RNA folding, the physiological function of Mss116p in aI5γ splicing includes a requirement for ATP-dependent local unfolding, allowing the conversion of nonfunctional RNA structure into functional RNA structure.


Assuntos
Trifosfato de Adenosina/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Íntrons , Splicing de RNA , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares , Reação em Cadeia da Polimerase , RNA Helicases/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética
5.
J Mol Biol ; 413(5): 952-72, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21945532

RESUMO

The Saccharomyces cerevisiae DEAD-box protein Mss116p is a general RNA chaperone that functions in splicing mitochondrial group I and group II introns. Recent X-ray crystal structures of Mss116p in complex with ATP analogs and single-stranded RNA show that the helicase core induces a bend in the bound RNA, as in other DEAD-box proteins, while a C-terminal extension (CTE) induces a second bend, resulting in RNA crimping. Here, we illuminate these structures by using high-throughput genetic selections, unigenic evolution, and analyses of in vivo splicing activity to comprehensively identify functionally important regions and permissible amino acid substitutions throughout Mss116p. The functionally important regions include those containing conserved sequence motifs involved in ATP and RNA binding or interdomain interactions, as well as previously unidentified regions, including surface loops that may function in protein-protein interactions. The genetic selections recapitulate major features of the conserved helicase motifs seen in other DEAD-box proteins but also show surprising variations, including multiple novel variants of motif III (SAT). Patterns of amino acid substitutions indicate that the RNA bend induced by the helicase core depends on ionic and hydrogen-bonding interactions with the bound RNA; identify a subset of critically interacting residues; and indicate that the bend induced by the CTE results primarily from a steric block. Finally, we identified two conserved regions-one the previously noted post II region in the helicase core and the other in the CTE-that may help displace or sequester the opposite RNA strand during RNA unwinding.


Assuntos
Motivos de Aminoácidos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Splicing de RNA , RNA Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sítios de Ligação , Northern Blotting , Sequência Conservada , Cristalografia por Raios X , RNA Helicases DEAD-box/química , Evolução Molecular , Immunoblotting , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa